Common Features of Enveloped Viruses and Implications for Immunogen Design for Next-Generation Vaccines

[1]  J. Huiskonen,et al.  Shielding and activation of a viral membrane fusion protein , 2018, Nature Communications.

[2]  K. Stiasny,et al.  The bright and the dark side of human antibody responses to flaviviruses: lessons for vaccine design , 2017, EMBO reports.

[3]  Haiyan Chen,et al.  Vaccine Induction of Heterologous Tier 2 HIV-1 Neutralizing Antibodies in Animal Models. , 2017, Cell reports.

[4]  U. Baxa,et al.  Soluble Prefusion Closed DS-SOSIP.664-Env Trimers of Diverse HIV-1 Strains. , 2017, Cell reports.

[5]  Daniel W. Kulp,et al.  Structure-based design of native-like HIV-1 envelope trimers to silence non-neutralizing epitopes and eliminate CD4 binding , 2017, Nature Communications.

[6]  M. Halloran,et al.  Antibody-dependent enhancement of severe dengue disease in humans , 2017, Science.

[7]  J. Lepault,et al.  A glycerophospholipid-specific pocket in the RVFV class II fusion protein drives target membrane insertion , 2017, Science.

[8]  G. Gao,et al.  The Postfusion Structure of the Heartland Virus Gc Glycoprotein Supports Taxonomic Separation of the Bunyaviral Families Phenuiviridae and Hantaviridae , 2017, Journal of Virology.

[9]  G. Gao,et al.  Structures of human-infecting Thogotovirus fusogens support a common ancestor with insect baculovirus , 2017, Proceedings of the National Academy of Sciences.

[10]  A. Walls,et al.  Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion , 2017, Proceedings of the National Academy of Sciences.

[11]  I. Wilson,et al.  Potent peptidic fusion inhibitors of influenza virus , 2017, Science.

[12]  D. Burton,et al.  Glycans Function as Anchors for Antibodies and Help Drive HIV Broadly Neutralizing Antibody Development. , 2017, Immunity.

[13]  L. Kaderali,et al.  Deciphering the Origin and Evolution of Hepatitis B Viruses by Means of a Family of Non-enveloped Fish Viruses , 2017, Cell host & microbe.

[14]  L. Stamatatos,et al.  Design and crystal structure of a native-like HIV-1 envelope trimer that engages multiple broadly neutralizing antibody precursors in vivo , 2017, The Journal of experimental medicine.

[15]  E. Go,et al.  Improving the Immunogenicity of Native-like HIV-1 Envelope Trimers by Hyperstabilization , 2017, Cell reports.

[16]  G. Gao,et al.  Structures of phlebovirus glycoprotein Gn and identification of a neutralizing antibody epitope , 2017, Proceedings of the National Academy of Sciences.

[17]  Barney S. Graham,et al.  Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen , 2017, Proceedings of the National Academy of Sciences.

[18]  K. Chandran,et al.  Structural basis for antibody-mediated neutralization of Lassa virus , 2017, Science.

[19]  M. Rossmann,et al.  Assembly, maturation and three-dimensional helical structure of the teratogenic rubella virus , 2017, PLoS pathogens.

[20]  John P. Moore,et al.  Open and Closed Structures Reveal Allostery and Pliability in the HIV-1 Envelope Spike , 2017, Nature.

[21]  G. Screaton,et al.  Covalently linked dengue virus envelope glycoprotein dimers reduce exposure of the immunodominant fusion loop epitope , 2017, Nature Communications.

[22]  P. Kwong,et al.  How HIV-1 entry mechanism and broadly neutralizing antibodies guide structure-based vaccine design , 2017, Current opinion in HIV and AIDS.

[23]  Yi Shi,et al.  Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains , 2017, Nature Communications.

[24]  R. Doms What Came First—the Virus or the Egg? , 2017, Cell.

[25]  N. Grishin,et al.  The Ancient Gamete Fusogen HAP2 Is a Eukaryotic Class II Fusion Protein , 2017, Cell.

[26]  Q. Sattentau,et al.  Stabilized HIV-1 envelope glycoprotein trimers for vaccine use , 2017, Current opinion in HIV and AIDS.

[27]  Ian A Wilson,et al.  The HIV‐1 envelope glycoprotein structure: nailing down a moving target , 2017, Immunological reviews.

[28]  B. Moss Membrane fusion during poxvirus entry. , 2016, Seminars in cell & developmental biology.

[29]  M. Tortorici,et al.  Mechanistic Insight into Bunyavirus-Induced Membrane Fusion from Structure-Function Analyses of the Hantavirus Envelope Glycoprotein Gc , 2016, PLoS pathogens.

[30]  Y. Modis,et al.  Crystal Structure of Glycoprotein C from a Hantavirus in the Post-fusion Conformation , 2016, PLoS pathogens.

[31]  Frank DiMaio,et al.  Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy , 2016, Nature Structural &Molecular Biology.

[32]  Daniel W. Kulp,et al.  Sequential Immunization Elicits Broadly Neutralizing Anti-HIV-1 Antibodies in Ig Knockin Mice , 2016, Cell.

[33]  Dong Soo Yun,et al.  HIV Vaccine Design to Target Germline Precursors of Glycan-Dependent Broadly Neutralizing Antibodies , 2016, Immunity.

[34]  Anavaj Sakuntabhai,et al.  Structural basis of potent Zika–dengue virus antibody cross-neutralization , 2016, Nature.

[35]  R. Bartenschlager,et al.  A Slow Maturation Process Renders Hepatitis B Virus Infectious. , 2016, Cell host & microbe.

[36]  D. Stuart,et al.  Toremifene interacts with and destabilizes the Ebola virus glycoprotein , 2016, Nature.

[37]  Anavaj Sakuntabhai,et al.  Structural basis of potent Zika–dengue virus antibody cross-neutralization , 2016, Nature.

[38]  R. Elliott,et al.  Structure of a phleboviral envelope glycoprotein reveals a consolidated model of membrane fusion , 2016, Proceedings of the National Academy of Sciences.

[39]  Sai Li,et al.  A Molecular-Level Account of the Antigenic Hantaviral Surface , 2016, Cell reports.

[40]  G. Whittaker,et al.  Fusion of Enveloped Viruses in Endosomes , 2016, Traffic.

[41]  S. Lok The Interplay of Dengue Virus Morphological Diversity and Human Antibodies. , 2016, Trends in microbiology.

[42]  A. Ward,et al.  Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer , 2016, Science.

[43]  Barney S. Graham,et al.  Pre-fusion structure of a human coronavirus spike protein , 2016, Nature.

[44]  F. Dimaio,et al.  Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer , 2016, Nature.

[45]  Thomas Strecker,et al.  Acidic pH-Induced Conformations and LAMP1 Binding of the Lassa Virus Glycoprotein Spike , 2016, PLoS pathogens.

[46]  Ben Murrell,et al.  Broadly Neutralizing Antibody Responses in a Large Longitudinal Sub-Saharan HIV Primary Infection Cohort , 2016, PLoS pathogens.

[47]  John P. Moore,et al.  Immunogenicity of Stabilized HIV-1 Envelope Trimers with Reduced Exposure of Non-neutralizing Epitopes , 2015, Cell.

[48]  D. Fremont,et al.  Broadly Neutralizing Alphavirus Antibodies Bind an Epitope on E2 and Inhibit Entry and Egress , 2015, Cell.

[49]  J. Porta,et al.  Cryo-EM structures elucidate neutralizing mechanisms of anti-chikungunya human monoclonal antibodies with therapeutic activity , 2015, Proceedings of the National Academy of Sciences.

[50]  G. Chuang,et al.  Prefusion F–specific antibodies determine the magnitude of RSV neutralizing activity in human sera , 2015, Science Translational Medicine.

[51]  H. Schuitemaker,et al.  A highly stable prefusion RSV F vaccine derived from structural analysis of the fusion mechanism , 2015, Nature Communications.

[52]  Y. Gaudin,et al.  Recent mechanistic and structural insights on class III viral fusion glycoproteins. , 2015, Current opinion in structural biology.

[53]  M. Beer,et al.  A Variegated Squirrel Bornavirus Associated with Fatal Human Encephalitis. , 2015, The New England journal of medicine.

[54]  T. Brummelkamp,et al.  Emerging intracellular receptors for hemorrhagic fever viruses. , 2015, Trends in microbiology.

[55]  Cinque S. Soto,et al.  A Cysteine Zipper Stabilizes a Pre-Fusion F Glycoprotein Vaccine for Respiratory Syncytial Virus , 2015, PloS one.

[56]  R. Lamb,et al.  Timing is everything: Fine-tuned molecular machines orchestrate paramyxovirus entry , 2015, Virology.

[57]  Cameron P Simmons,et al.  A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus , 2014, Nature Immunology.

[58]  R. Duncan,et al.  The p10 FAST protein fusion peptide functions as a cystine noose to induce cholesterol-dependent liposome fusion without liposome tubulation. , 2015, Biochimica et biophysica acta.

[59]  Peter D. Kwong,et al.  Conformational dynamics of single HIV-1 envelope trimers on the surface of native virions , 2014, Science.

[60]  L. Pelkmans,et al.  Coronavirus Cell Entry Occurs through the Endo-/Lysosomal Pathway in a Proteolysis-Dependent Manner , 2014, PLoS pathogens.

[61]  F. Rey,et al.  Structural Basis of Eukaryotic Cell-Cell Fusion , 2014, Cell.

[62]  J. Marcotrigiano,et al.  Structure of the Core Ectodomain of the Hepatitis C Virus Envelope Glycoprotein 2 , 2014, Nature.

[63]  Robyn L. Stanfield,et al.  Hepatitis C Virus E2 Envelope Glycoprotein Core Structure , 2013, Science.

[64]  Cinque S. Soto,et al.  Structure-Based Design of a Fusion Glycoprotein Vaccine for Respiratory Syncytial Virus , 2013, Science.

[65]  John P. Moore,et al.  Cleavage strongly influences whether soluble HIV-1 envelope glycoprotein trimers adopt a native-like conformation , 2013, Proceedings of the National Academy of Sciences.

[66]  U. Baxa,et al.  Structure of RSV Fusion Glycoprotein Trimer Bound to a Prefusion-Specific Neutralizing Antibody , 2013, Science.

[67]  Y. Modis,et al.  Crystal structure of glycoprotein E2 from bovine viral diarrhea virus , 2013, Proceedings of the National Academy of Sciences.

[68]  M. Diamond,et al.  Structural analyses at pseudo atomic resolution of Chikungunya virus and antibodies show mechanisms of neutralization , 2013, eLife.

[69]  F. Rey,et al.  Alphavirus structure: activation for entry at the target cell surface. , 2013, Current opinion in virology.

[70]  Y. Yamauchi,et al.  Virus entry at a glance , 2013, Journal of Cell Science.

[71]  John P. Moore,et al.  Asymmetric recognition of the HIV-1 trimer by broadly neutralizing antibody PG9 , 2013, Proceedings of the National Academy of Sciences.

[72]  D. Stuart,et al.  Structure of a Pestivirus Envelope Glycoprotein E2 Clarifies Its Role in Cell Entry , 2013, Cell reports.

[73]  Y. Modis,et al.  Crystal structure of glycoprotein C from Rift Valley fever virus , 2013, Proceedings of the National Academy of Sciences.

[74]  R. DuBois,et al.  Functional and evolutionary insight from the crystal structure of rubella virus protein E1 , 2013, Nature.

[75]  Qinfen Zhang,et al.  CryoEM structure of the mature dengue virus at 3.5-Å resolution , 2012, Nature Structural &Molecular Biology.

[76]  S. Kunz,et al.  Envelope Glycoprotein of Arenaviruses , 2012, Viruses.

[77]  R. Kuhn,et al.  Molecular links between the E2 envelope glycoprotein and nucleocapsid core in Sindbis virus. , 2011, Journal of molecular biology.

[78]  F. Rey,et al.  Class II enveloped viruses , 2011, Cellular microbiology.

[79]  M. Baker,et al.  4.4 Å cryo-EM structure of an enveloped alphavirus Venezuelan equine encephalitis virus , 2011, The EMBO journal.

[80]  P. Kwong,et al.  Structure of Respiratory Syncytial Virus Fusion Glycoprotein in the Postfusion Conformation Reveals Preservation of Neutralizing Epitopes , 2011, Journal of Virology.

[81]  C. Mandl,et al.  Structural basis for immunization with postfusion respiratory syncytial virus fusion F glycoprotein (RSV F) to elicit high neutralizing antibody titers , 2011, Proceedings of the National Academy of Sciences.

[82]  Timothy A. Whitehead,et al.  Computational Design of Proteins Targeting the Conserved Stem Region of Influenza Hemagglutinin , 2011, Science.

[83]  S. Higgs,et al.  Chikungunya virus emergence is constrained in Asia by lineage-specific adaptive landscapes , 2011, Proceedings of the National Academy of Sciences.

[84]  M. Rossmann,et al.  Structural Changes of Envelope Proteins During Alphavirus Fusion , 2010, Nature.

[85]  F. Rey,et al.  Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography , 2010, Nature.

[86]  J. Lepault,et al.  Distinct structural rearrangements of the VSV glycoprotein drive membrane fusion , 2010, The Journal of cell biology.

[87]  Holly Janes,et al.  Tiered Categorization of a Diverse Panel of HIV-1 Env Pseudoviruses for Assessment of Neutralizing Antibodies , 2009, Journal of Virology.

[88]  Gira Bhabha,et al.  Antibody Recognition of a Highly Conserved Influenza Virus Epitope , 2009, Science.

[89]  D. Stuart,et al.  The postfusion structure of baculovirus gp64 supports a unified view of viral fusion machines , 2008, Nature Structural &Molecular Biology.

[90]  D. Burton,et al.  Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor , 2008, Nature.

[91]  S. Harrison Viral membrane fusion , 2008, Nature Structural &Molecular Biology.

[92]  H. Garoff,et al.  Intersubunit Disulfide Isomerization Controls Membrane Fusion of Human T-Cell Leukemia Virus Env , 2008, Journal of Virology.

[93]  Ying Zhang,et al.  The Flavivirus Precursor Membrane-Envelope Protein Complex: Structure and Maturation , 2008, Science.

[94]  Wei Zhang,et al.  Structure of the Immature Dengue Virus at Low pH Primes Proteolytic Maturation , 2008, Science.

[95]  S. Higgs,et al.  A Single Mutation in Chikungunya Virus Affects Vector Specificity and Epidemic Potential , 2007, PLoS pathogens.

[96]  R. Doms,et al.  Identification of a Novel C-Terminal Cleavage of Crimean-Congo Hemorrhagic Fever Virus PreGN That Leads to Generation of an NSM Protein , 2007, Journal of Virology.

[97]  S. Roche,et al.  Structure of the Prefusion Form of the Vesicular Stomatitis Virus Glycoprotein G , 2007, Science.

[98]  S. Harrison,et al.  Crystal Structure of Glycoprotein B from Herpes Simplex Virus 1 , 2006, Science.

[99]  S. Roche,et al.  Crystal Structure of the Low-pH Form of the Vesicular Stomatitis Virus Glycoprotein G , 2006, Science.

[100]  R. Lamb,et al.  Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation , 2006, Nature.

[101]  D. Lavillette,et al.  Monoclonal Antibody AP33 Defines a Broadly Neutralizing Epitope on the Hepatitis C Virus E2 Envelope Glycoprotein , 2005, Journal of Virology.

[102]  R. Lamb,et al.  Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[103]  Ian A. Wilson,et al.  Structure of the Uncleaved Human H1 Hemagglutinin from the Extinct 1918 Influenza Virus , 2004, Science.

[104]  R. Elliott,et al.  Polymorphism and Structural Maturation of Bunyamwera Virus in Golgi and Post-Golgi Compartments , 2003, Journal of Virology.

[105]  John P. Moore,et al.  Stabilization of the Soluble, Cleaved, Trimeric Form of the Envelope Glycoprotein Complex of Human Immunodeficiency Virus Type 1 , 2002, Journal of Virology.

[106]  Wei Zhang,et al.  Structure of Dengue Virus Implications for Flavivirus Organization, Maturation, and Fusion , 2002, Cell.

[107]  M. Lawrence,et al.  The structure of the fusion glycoprotein of Newcastle disease virus suggests a novel paradigm for the molecular mechanism of membrane fusion. , 2001, Structure.

[108]  J. Binley,et al.  A Recombinant Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Complex Stabilized by an Intermolecular Disulfide Bond between the gp120 and gp41 Subunits Is an Antigenic Mimic of the Trimeric Virion-Associated Structure , 2000, Journal of Virology.

[109]  P. Wingfield,et al.  The crystal structure of the SIV gp41 ectodomain at 1.47 A resolution. , 1999, Journal of structural biology.

[110]  S. Pelletier,et al.  Specific Single or Double Proline Substitutions in the “Spring-loaded” Coiled-Coil Region of the Influenza Hemagglutinin Impair or Abolish Membrane Fusion Activity , 1998, The Journal of cell biology.

[111]  Paul E. Kennedy,et al.  HIV-1 Entry Cofactor: Functional cDNA Cloning of a Seven-Transmembrane, G Protein-Coupled Receptor , 1996, Science.

[112]  S. Harrison,et al.  The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution , 1995, Nature.

[113]  I. Wilson,et al.  Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution , 1981, Nature.

[114]  E. Saphire,et al.  Filovirus Structural Biology: The Molecules in the Machine. , 2017, Current topics in microbiology and immunology.

[115]  Sadid A. Hasan,et al.  Structural biology of Zika virus and other flaviviruses , 2017, Nature Structural & Molecular Biology.

[116]  A. Herrmann,et al.  The pathway to membrane fusion through hemifusion. , 2011, Current topics in membranes.

[117]  D R Burton,et al.  A model for neutralization of viruses based on antibody coating of the virion surface. , 2001, Current topics in microbiology and immunology.

[118]  V. Parsegian,et al.  Hydration forces. , 1993, Annual review of physical chemistry.