Clocks in Feynman's computer and Kitaev's local Hamiltonian: Bias, gaps, idling, and pulse tuning

We present a collection of results about the clock in Feynman's computer construction and Kitaev's Local Hamiltonian problem. First, by analyzing the spectra of quantum walks on a line with varying endpoint terms, we find a better lower bound on the gap of the Feynman Hamiltonian, which translates into a less strict promise gap requirement for the QMA-complete Local Hamiltonian problem. We also translate this result into the language of adiabatic quantum computation. Second, introducing an idling clock construction with a large state space but fast Cesaro mixing, we provide a way for achieving an arbitrarily high success probability of computation with Feynman's computer with only a logarithmic increase in the number of clock qubits. Finally, we tune and thus improve the costs (locality, gap scaling) of implementing a (pulse) clock with a single excitation.

[1]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[2]  Dario Tamascelli,et al.  QUANTUM TIMING AND SYNCHRONIZATION PROBLEMS , 2004 .

[3]  Peter W Shor,et al.  Supercritical entanglement in local systems: Counterexample to the area law for quantum matter , 2016, Proceedings of the National Academy of Sciences.

[4]  Barbara M. Terhal,et al.  The complexity of quantum spin systems on a two-dimensional square lattice , 2008, Quantum Inf. Comput..

[5]  39 , 2014, Fetch the Devil.

[6]  M. Ruskai,et al.  Bounds for the adiabatic approximation with applications to quantum computation , 2006, quant-ph/0603175.

[7]  F. Verstraete,et al.  Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.

[8]  Chris Marriott,et al.  Quantum Arthur–Merlin games , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[9]  B. Terhal,et al.  Universal adiabatic quantum computation via the space-time circuit-to-Hamiltonian construction. , 2014, Physical review letters.

[10]  New construction for a QMA complete three-local Hamiltonian , 2007, quant-ph/0612113.

[11]  Amnon Ta-Shma,et al.  Adiabatic Quantum State Generation , 2007, SIAM J. Comput..

[12]  Adv , 2019, International Journal of Pediatrics and Adolescent Medicine.

[13]  Julia Kempe,et al.  3-local Hamitonian is QMA-complete , 2003 .

[14]  Klaus Sutner,et al.  On σ-Automata , 1988, Complex Syst..

[15]  Yong Zhang,et al.  Fast amplification of QMA , 2009, Quantum Inf. Comput..

[16]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[17]  Daniel Gottesman,et al.  Entanglement versus gap for one-dimensional spin systems , 2009, 0901.1108.

[18]  M. Wolf,et al.  Undecidability of the spectral gap , 2015, Nature.

[19]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[20]  Sean Hallgren,et al.  The local Hamiltonian problem on a line with eight states is QMA-complete , 2013, Quantum Inf. Comput..

[21]  김창호,et al.  35. , 1991, Maxime Planoudes, Lettres.

[22]  Pawel Wocjan,et al.  Two QCMA-complete problems , 2003, Quantum Inf. Comput..

[23]  U. Vazirani,et al.  A polynomial time algorithm for the ground state of one-dimensional gapped local Hamiltonians , 2015, Nature Physics.

[24]  F. Verstraete,et al.  Computational complexity of interacting electrons and fundamental limitations of density functional theory , 2007, 0712.0483.

[25]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[26]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[27]  TOHRU KOMA,et al.  The Spectral Gap of the Ferromagnetic XXZ-Chain , 1995 .

[28]  Daniel Nagaj,et al.  Quantum Walks , 2012, 1207.7283.

[29]  Seth Lloyd,et al.  Adiabatic Quantum Computation Is Equivalent to Standard Quantum Computation , 2008, SIAM Rev..

[30]  R. Feynman Quantum mechanical computers , 1986 .

[31]  Daniel A. Spielman,et al.  Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.

[32]  Barbara M. Terhal,et al.  Complexity of Stoquastic Frustration-Free Hamiltonians , 2008, SIAM J. Comput..

[33]  Seung Woo Shin,et al.  Quantum Hamiltonian Complexity , 2014, Found. Trends Theor. Comput. Sci..

[34]  C. Ross Found , 1869, The Dental register.

[35]  Alistair Sinclair,et al.  Improved Bounds for Mixing Rates of Markov Chains and Multicommodity Flow , 1992, Combinatorics, Probability and Computing.

[36]  Adam D. Bookatz QMA-complete problems , 2012, Quantum Inf. Comput..

[37]  Dorit Aharonov,et al.  Entanglement vs. gap for one-dimensional spin systems , 2008 .

[38]  N. Cerf,et al.  Quantum search by local adiabatic evolution , 2001, quant-ph/0107015.

[39]  37 , 2018, In Pursuit.

[40]  Ronald L. Rivest,et al.  Introduction to Algorithms, third edition , 2009 .

[41]  Julia Kempe,et al.  The Complexity of the Local Hamiltonian Problem , 2004, FSTTCS.

[42]  Rahul Jain,et al.  On the Power of a Unique Quantum Witness , 2009, Theory Comput..

[43]  Pawel Wocjan,et al.  A promiseBQP-complete string rewriting problem , 2007, Quantum Inf. Comput..

[44]  J. Haladyn Comb , 2019, Duchamp, Aesthetics and Capitalism.

[45]  Daniel Nagaj,et al.  Quantum speedup by quantum annealing. , 2012, Physical review letters.

[46]  Xiao-Liang Qi,et al.  Determining a local Hamiltonian from a single eigenstate , 2017, Quantum.

[47]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[48]  Lance Fortnow,et al.  Proceedings of the 55th Annual ACM Symposium on Theory of Computing , 2011, STOC.

[49]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[50]  P. Diaconis,et al.  Geometric Bounds for Eigenvalues of Markov Chains , 1991 .

[51]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[52]  Martin Schwarz,et al.  Preparing projected entangled pair states on a quantum computer. , 2011, Physical review letters.