Twitter spammer detection using data stream clustering

[1]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[2]  Haining Wang,et al.  Detecting Social Spam Campaigns on Twitter , 2012, ACNS.

[3]  Guofei Gu,et al.  Analyzing spammers' social networks for fun and profit: a case study of cyber criminal ecosystem on twitter , 2012, WWW.

[4]  Christian Sohler,et al.  StreamKM++: A clustering algorithm for data streams , 2010, JEAL.

[5]  M. Chuah,et al.  Spam Detection on Twitter Using Traditional Classifiers , 2011, ATC.

[6]  Dawn Xiaodong Song,et al.  Design and Evaluation of a Real-Time URL Spam Filtering Service , 2011, 2011 IEEE Symposium on Security and Privacy.

[7]  Vern Paxson,et al.  @spam: the underground on 140 characters or less , 2010, CCS '10.

[8]  Alex Hai Wang,et al.  Don't follow me: Spam detection in Twitter , 2010, 2010 International Conference on Security and Cryptography (SECRYPT).

[9]  A. Zimek,et al.  Towards subspace clustering on dynamic data: an incremental version of PreDeCon , 2010, StreamKDD '10.

[10]  Alex Hai Wang,et al.  Detecting Spam Bots in Online Social Networking Sites: A Machine Learning Approach , 2010, DBSec.

[11]  Geoff Holmes,et al.  MOA: Massive Online Analysis , 2010, J. Mach. Learn. Res..

[12]  Virgílio A. F. Almeida,et al.  Detecting Spammers on Twitter , 2010 .

[13]  Sergei Vassilvitskii,et al.  k-means++: the advantages of careful seeding , 2007, SODA '07.

[14]  Aoying Zhou,et al.  Density-Based Clustering over an Evolving Data Stream with Noise , 2006, SDM.

[15]  Sariel Har-Peled,et al.  Coresets for $k$-Means and $k$-Median Clustering and their Applications , 2018, STOC 2004.

[16]  Christian Böhm,et al.  Density connected clustering with local subspace preferences , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).

[17]  Sariel Har-Peled,et al.  On coresets for k-means and k-median clustering , 2004, STOC '04.

[18]  Ian Witten,et al.  Data Mining , 2000 .

[19]  Hans-Peter Kriegel,et al.  OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.

[20]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[21]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.