暂无分享,去创建一个
David E. Keyes | Stefano Zampini | George M. Turkiyyah | Wajih Bou Karam | D. Keyes | G. Turkiyyah | S. Zampini
[1] G. Turkiyyah,et al. Hierarchical algorithms on hierarchical architectures , 2020, Philosophical Transactions of the Royal Society A.
[2] Alfredo Buttari,et al. Block Low-Rank Matrices with Shared Bases: Potential and Limitations of the BLR2 Format , 2021, SIAM J. Matrix Anal. Appl..
[3] Eric Darve,et al. Sparse supernodal solver using block low-rank compression: Design, performance and analysis , 2018, J. Comput. Sci..
[4] Owe Axelsson,et al. Diagonally compensated reduction and related preconditioning methods , 1994, Numer. Linear Algebra Appl..
[5] Jian Cao,et al. Exploiting low-rank covariance structures for computing high-dimensional normal and Student-t probabilities , 2020, Statistics and Computing.
[6] Claude-Pierre Jeannerod,et al. Improving the Complexity of Block Low-Rank Factorizations with Fast Matrix Arithmetic , 2019, SIAM J. Matrix Anal. Appl..
[7] Leslie Greengard,et al. Fast Direct Methods for Gaussian Processes , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[8] David E. Keyes,et al. High Performance Multivariate Geospatial Statistics on Manycore Systems , 2021, IEEE Transactions on Parallel and Distributed Systems.
[9] Jack J. Dongarra,et al. Reducing the Amount of Pivoting in Symmetric Indefinite Systems , 2011, PPAM.
[10] Alexander Heinecke,et al. LIBXSMM: Accelerating Small Matrix Multiplications by Runtime Code Generation , 2016, SC16: International Conference for High Performance Computing, Networking, Storage and Analysis.
[11] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[12] Nicholas J. Higham,et al. A New Preconditioner that Exploits Low-Rank Approximations to Factorization Error , 2018, SIAM J. Sci. Comput..
[13] D. Keyes,et al. Hierarchical matrix approximations for space-fractional diffusion equations , 2020, Computer Methods in Applied Mechanics and Engineering.
[14] David E. Keyes,et al. Randomized GPU Algorithms for the Construction of Hierarchical Matrices from Matrix-Vector Operations , 2019, SIAM J. Sci. Comput..
[15] Alfredo Buttari,et al. On the Complexity of the Block Low-Rank Multifrontal Factorization , 2017, SIAM J. Sci. Comput..
[16] Wolfgang Hackbusch,et al. A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.
[17] Stefano Zampini,et al. PCBDDC: A Class of Robust Dual-Primal Methods in PETSc , 2016, SIAM J. Sci. Comput..
[18] Per-Gunnar Martinsson,et al. A direct solver with O(N) complexity for integral equations on one-dimensional domains , 2011, 1105.5372.
[19] Edmond Chow,et al. Preserving Positive Definiteness in Hierarchically Semiseparable Matrix Approximations , 2018, SIAM J. Matrix Anal. Appl..
[20] William B. March,et al. ASKIT: Approximate Skeletonization Kernel-Independent Treecode in High Dimensions , 2014, SIAM J. Sci. Comput..
[21] David E. Keyes,et al. On the Robustness and Prospects of Adaptive BDDC Methods for Finite Element Discretizations of Elliptic PDEs with High-Contrast Coefficients , 2016, PASC.
[22] S. H. Cheng,et al. A Modified Cholesky Algorithm Based on a Symmetric Indefinite Factorization , 1998, SIAM J. Matrix Anal. Appl..
[23] S. Börm. Efficient Numerical Methods for Non-local Operators , 2010 .
[24] David E. Keyes,et al. Hierarchical Matrix Operations on GPUs: Matrix-Vector Multiplication and Compression , 2019, ACM Trans. Math. Softw..
[25] Sergej Rjasanow,et al. Adaptive Cross Approximation of Dense Matrices , 2000 .
[26] Patrick R. Amestoy,et al. Bridging the Gap Between Flat and Hierarchical Low-Rank Matrix Formats: The Multilevel Block Low-Rank Format , 2019, SIAM J. Sci. Comput..
[27] David E. Keyes,et al. Parallel accelerated cyclic reduction preconditioner for three-dimensional elliptic PDEs with variable coefficients , 2017, J. Comput. Appl. Math..
[28] Per-Gunnar Martinsson,et al. On the Compression of Low Rank Matrices , 2005, SIAM J. Sci. Comput..
[29] Jianlin Xia,et al. Robust Approximate Cholesky Factorization of Rank-Structured Symmetric Positive Definite Matrices , 2010, SIAM J. Matrix Anal. Appl..
[30] Jennifer A. Scott,et al. On Positive Semidefinite Modification Schemes for Incomplete Cholesky Factorization , 2014, SIAM J. Sci. Comput..
[31] Sjsu ScholarWorks,et al. Rank revealing QR factorizations , 2014 .
[32] Pieter Ghysels,et al. A Distributed-Memory Package for Dense Hierarchically Semi-Separable Matrix Computations Using Randomization , 2015, ACM Trans. Math. Softw..
[33] David E. Keyes,et al. Hierarchical Decompositions for the Computation of High-Dimensional Multivariate Normal Probabilities , 2018 .
[34] Patrick R. Amestoy,et al. Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures , 2019, ACM Trans. Math. Softw..
[35] Yang Liu,et al. Scalable and Memory-Efficient Kernel Ridge Regression , 2020, 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
[36] Yang Liu,et al. A Study of Clustering Techniques and Hierarchical Matrix Formats for Kernel Ridge Regression , 2018, 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
[37] Jean-Yves L'Excellent,et al. Improving Multifrontal Methods by Means of Block Low-Rank Representations , 2015, SIAM J. Sci. Comput..
[38] Julien Langou,et al. A Class of Parallel Tiled Linear Algebra Algorithms for Multicore Architectures , 2007, Parallel Comput..
[39] David E. Keyes,et al. Hierarchical Matrix Approximations of Hessians Arising in Inverse Problems Governed by PDEs , 2020, SIAM J. Sci. Comput..