Significant out-of-sample classification from methylation profile scoring for amyotrophic lateral sclerosis

[1]  R. Marioni,et al.  Improved precision of epigenetic clock estimates across tissues and its implication for biological ageing , 2019, Genome Medicine.

[2]  M. Fogarty Amyotrophic lateral sclerosis as a synaptopathy , 2019, Neural regeneration research.

[3]  J. Mefford,et al.  Supplement for: Adjusting for principal components of molecular phenotypes induces replicating false positives , 2018 .

[4]  O. Andreassen,et al.  A global overview of pleiotropy and genetic architecture in complex traits , 2019, Nature Genetics.

[5]  P. Visscher,et al.  OSCA: a tool for omic-data-based complex trait analysis , 2018, Genome Biology.

[6]  Naomi R. Wray,et al.  Project MinE: study design and pilot analyses of a large-scale whole-genome sequencing study in amyotrophic lateral sclerosis , 2018, European Journal of Human Genetics.

[7]  George Davey Smith,et al.  Meffil: efficient normalization and analysis of very large DNA methylation datasets , 2018, Bioinform..

[8]  M. Fogarty Driven to decay: Excitability and synaptic abnormalities in amyotrophic lateral sclerosis , 2018, Brain Research Bulletin.

[9]  Stuart J. Ritchie,et al.  Epigenetic prediction of complex traits and death , 2018, Genome Biology.

[10]  Timothy A. Miller,et al.  Genome-wide Analyses Identify KIF5A as a Novel ALS Gene in and for Therapeutic , 2018 .

[11]  Sina A. Gharib,et al.  Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood , 2018, Nature Communications.

[12]  L. Mei,et al.  Neuromuscular Junction Formation, Aging, and Disorders. , 2018, Annual review of physiology.

[13]  Project MinE Sequencing Consortium Project MinE: study design and pilot analyses of a large-scale whole-genome sequencing study in amyotrophic lateral sclerosis , 2018 .

[14]  Stephen A. Goutman,et al.  Correlation of Peripheral Immunity With Rapid Amyotrophic Lateral Sclerosis Progression , 2017, JAMA neurology.

[15]  D. Richardson,et al.  Military service, deployments, and exposures in relation to amyotrophic lateral sclerosis survival , 2017, PloS one.

[16]  P. Visscher,et al.  Cross-ethnic meta-analysis identifies association of the GPX3-TNIP1 locus with amyotrophic lateral sclerosis , 2017, Nature Communications.

[17]  Maureen A. Sartor,et al.  annotatr: Genomic regions in context , 2016, bioRxiv.

[18]  N. Staff,et al.  Comprehensive immune profiling reveals substantial immune system alterations in a subset of patients with amyotrophic lateral sclerosis , 2017, PloS one.

[19]  P. Visscher,et al.  10 Years of GWAS Discovery: Biology, Function, and Translation. , 2017, American journal of human genetics.

[20]  Shanker Kalyana-Sundaram,et al.  Characterization of Gene Expression Phenotype in Amyotrophic Lateral Sclerosis Monocytes , 2017, JAMA neurology.

[21]  R. Zukin,et al.  The emerging field of epigenetics in neurodegeneration and neuroprotection , 2017, Nature Reviews Neuroscience.

[22]  M. Aschner,et al.  Biometals in neurodegenerative diseases: mechanisms and therapeutics , 2017 .

[23]  J. Veldink ALS genetic epidemiology ‘How simplex is the genetic epidemiology of ALS?’ , 2017, Journal of Neurology, Neurosurgery, and Psychiatry.

[24]  A. Al-Chalabi,et al.  Gene discovery in amyotrophic lateral sclerosis: implications for clinical management , 2017, Nature Reviews Neurology.

[25]  Peter W. Laird,et al.  Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes , 2016, Nucleic acids research.

[26]  D. McTigue,et al.  Oligodendrocytes contribute to motor neuron death in ALS via SOD1-dependent mechanism , 2016, Proceedings of the National Academy of Sciences.

[27]  Annelot M. Dekker,et al.  Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis , 2016, Nature Genetics.

[28]  P. Visscher,et al.  Genetic pleiotropy in complex traits and diseases: implications for genomic medicine , 2016, Genome Medicine.

[29]  Stephen A. Goutman,et al.  Increased ratio of circulating neutrophils to monocytes in amyotrophic lateral sclerosis , 2016, Neurology: Neuroimmunology & Neuroinflammation.

[30]  Kang-Yell Choi,et al.  CXXC5 plays a role as a transcription activator for myelin genes on oligodendrocyte differentiation , 2016, Glia.

[31]  G. Landreth,et al.  Retinoids and motor neuron disease: Potential role in amyotrophic lateral sclerosis , 2016, Journal of the Neurological Sciences.

[32]  E. Evangelou,et al.  Environmental Risk Factors and Amyotrophic Lateral Sclerosis: An Umbrella Review and Critical Assessment of Current Evidence from Systematic Reviews and Meta-Analyses of Observational Studies , 2016, Neuroepidemiology.

[33]  M. Weisskopf,et al.  Amyotrophic Lateral Sclerosis and the Military: A Population-based Study in the Danish Registries , 2015, Epidemiology.

[34]  M. Pook,et al.  DNA methylation in neurodegenerative diseases , 2016 .

[35]  J. Mill,et al.  Interindividual methylomic variation across blood, cortex, and cerebellum: implications for epigenetic studies of neurological and neuropsychiatric phenotypes , 2015, Epigenetics.

[36]  R. Marioni,et al.  Improving Phenotypic Prediction by Combining Genetic and Epigenetic Associations , 2015, American journal of human genetics.

[37]  K. Hansen,et al.  Functional normalization of 450k methylation array data improves replication in large cancer studies , 2014, Genome Biology.

[38]  P. Visscher,et al.  Advantages and pitfalls in the application of mixed-model association methods , 2014, Nature Genetics.

[39]  R. Irizarry,et al.  Accounting for cellular heterogeneity is critical in epigenome-wide association studies , 2014, Genome Biology.

[40]  M. Bowerman,et al.  Neuroimmunity dynamics and the development of therapeutic strategies for amyotrophic lateral sclerosis , 2013, Front. Cell. Neurosci..

[41]  S. Horvath DNA methylation age of human tissues and cell types , 2013, Genome Biology.

[42]  M. Bellingham,et al.  Translational Highlights , 2013, Hormones and Cancer.

[43]  Alexandra M. Binder,et al.  Recommendations for the design and analysis of epigenome-wide association studies , 2013, Nature Methods.

[44]  C. Cotman,et al.  Accelerated neurodegeneration through chaperone-mediated oligomerization of tau. , 2013, The Journal of clinical investigation.

[45]  A. Gnirke,et al.  Charting a dynamic DNA methylation landscape of the human genome , 2013, Nature.

[46]  Eric-Wubbo Lameijer,et al.  Identification and systematic annotation of tissue-specific differentially methylated regions using the Illumina 450k array , 2013, Epigenetics & Chromatin.

[47]  Aberrant Regulation of DNA Methylation in Amyotrophic Lateral Sclerosis: A New Target of Disease Mechanisms , 2013, Neurotherapeutics.

[48]  A. Al-Chalabi,et al.  Genetic and epigenetic studies of amyotrophic lateral sclerosis , 2013, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[49]  D. Ruden,et al.  Identification of Epigenetically Altered Genes in Sporadic Amyotrophic Lateral Sclerosis , 2012, PloS one.

[50]  R. Dobson,et al.  Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood , 2012, Genome Biology.

[51]  M. Bellingham,et al.  Impairments to the GH-IGF-I axis in hSOD1G93A mice give insight into possible mechanisms of GH dysregulation in patients with amyotrophic lateral sclerosis. , 2012, Endocrinology.

[52]  Devin C. Koestler,et al.  DNA methylation arrays as surrogate measures of cell mixture distribution , 2012, BMC Bioinformatics.

[53]  J. Flanagan,et al.  Intragenic DNA methylation: implications of this epigenetic mechanism for cancer research , 2011, British Journal of Cancer.

[54]  A. Ludolph,et al.  Amyotrophic lateral sclerosis. , 2012, Current opinion in neurology.

[55]  Leonard H van den Berg,et al.  Population based epidemiology of amyotrophic lateral sclerosis using capture–recapture methodology , 2011, Journal of Neurology, Neurosurgery & Psychiatry.

[56]  V. Baekelandt,et al.  Unraveling the Role of Peptidyl-Prolyl Isomerases in Neurodegeneration , 2011, Molecular Neurobiology.

[57]  P. Mccombe,et al.  The Role of Immune and Inflammatory Mechanisms in ALS , 2011, Current molecular medicine.

[58]  A. Brunetti,et al.  A randomized controlled clinical trial of growth hormone in amyotrophic lateral sclerosis: clinical, neuroimaging, and hormonal results , 2011, Journal of Neurology.

[59]  Xavier Robin,et al.  pROC: an open-source package for R and S+ to analyze and compare ROC curves , 2011, BMC Bioinformatics.

[60]  Allen D. Delaney,et al.  Conserved Role of Intragenic DNA Methylation in Regulating Alternative Promoters , 2010, Nature.

[61]  P. Visscher,et al.  Common SNPs explain a large proportion of heritability for human height , 2011 .

[62]  H. Kang,et al.  Variance component model to account for sample structure in genome-wide association studies , 2010, Nature Genetics.

[63]  D. Baker,et al.  Inflammation in neurodegenerative diseases , 2010, Immunology.

[64]  Kimberly D Siegmund,et al.  Epigenetic profiling of somatic tissues from human autopsy specimens identifies tissue- and individual-specific DNA methylation patterns. , 2009, Human molecular genetics.

[65]  E. Binder The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders , 2009, Psychoneuroendocrinology.

[66]  Henry Brodaty,et al.  A Comprehensive Neuropsychiatric Study of Elderly Twins: The Older Australian Twins Study , 2009, Twin Research and Human Genetics.

[67]  C. Howe,et al.  SUBCUTANEOUS IGF-1 IS NOT BENEFICIAL IN 2-YEAR ALS TRIAL , 2009, Neurology.

[68]  K. Fischbeck,et al.  Overexpression of IGF-1 in Muscle Attenuates Disease in a Mouse Model of Spinal and Bulbar Muscular Atrophy , 2009, Neuron.

[69]  O. Hermanson,et al.  CXXC5 Is a Novel BMP4-regulated Modulator of Wnt Signaling in Neural Stem Cells* , 2009, Journal of Biological Chemistry.

[70]  A. Feinberg,et al.  Genome-wide methylation analysis of human colon cancer reveals similar hypo- and hypermethylation at conserved tissue-specific CpG island shores , 2008, Nature Genetics.

[71]  A. Musarò,et al.  Local expression of mIgf-1 modulates ubiquitin, caspase and CDK5 expression in skeletal muscle of an ALS mouse model , 2008, Neurological research.

[72]  M. Maden Retinoic acid in the development, regeneration and maintenance of the nervous system , 2007, Nature Reviews Neuroscience.

[73]  A. Musarò,et al.  Muscle expression of a local Igf-1 isoform protects motor neurons in an ALS mouse model , 2005, The Journal of cell biology.

[74]  M. Swash,et al.  El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis , 2000, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[75]  P. Chambon,et al.  Physical and Functional Interactions between Cellular Retinoic Acid Binding Protein II and the Retinoic Acid-Dependent Nuclear Complex , 1999, Molecular and Cellular Biology.

[76]  Peter A. Jones,et al.  Cancer-epigenetics comes of age , 1999, Nature Genetics.

[77]  T. Munsat,et al.  Recombinant growth hormone treatment of amyotrophic lateral sclerosis , 1993, Muscle & nerve.

[78]  L. Gudas,et al.  The level of CRABP-I expression influences the amounts and types of all-trans-retinoic acid metabolites in F9 teratocarcinoma stem cells. , 1992, The Journal of biological chemistry.