Compressive Sensing Matrices and Hash Families

Deterministic construction of measurement matrices for compressive sensing can be effected by first constructing a relatively small matrix explicitly, and then inflating it using a column replacement technique to form a large measurement matrix that supports at least the same level of sparsity. In particular, using easily developed null space conditions for l0- and l1-recoverability, properties of the pattern matrix used to select columns lead to well-studied matrices, separating and distributing hash families. Two-stage compression and recovery techniques are developed that employ more computationally intensive l0-recoverability for small matrices and simpler l1-recoverability for one larger matrix; this can reduce the number of measurements required.

[1]  Jürgen Bierbrauer,et al.  Almost Independent and Weakly Biased Arrays: Efficient Constructions and Cryptologic Applications , 2000, CRYPTO.

[2]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[3]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[4]  Simon R. Blackburn,et al.  Perfect Hash Families: Probabilistic Methods and Explicit Constructions , 2000, J. Comb. Theory, Ser. A.

[5]  D. Donoho,et al.  Counting faces of randomly-projected polytopes when the projection radically lowers dimension , 2006, math/0607364.

[6]  A. Robert Calderbank,et al.  Efficient and Robust Compressed Sensing Using Optimized Expander Graphs , 2009, IEEE Transactions on Information Theory.

[7]  R. DeVore,et al.  Compressed sensing and best k-term approximation , 2008 .

[8]  Charles J. Colbourn,et al.  Covering arrays and hash families , 2011, Information Security, Coding Theory and Related Combinatorics.

[9]  Joel A. Tropp,et al.  Recovery of short, complex linear combinations via /spl lscr//sub 1/ minimization , 2005, IEEE Transactions on Information Theory.

[10]  Richard G. Baraniuk,et al.  Compressive Sensing , 2008, Computer Vision, A Reference Guide.

[11]  Douglas R. Stinson,et al.  A bound on the size of separating hash families , 2008, J. Comb. Theory, Ser. A.

[12]  Prof. Dr. Kurt Mehlhorn,et al.  Data Structures and Algorithms 1 , 1984, EATCS.

[13]  Douglas R. Stinson,et al.  Secure frameproof codes, key distribution patterns, group testing algorithms and related structures , 2000 .

[14]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[15]  Douglas R. Stinson,et al.  On generalized separating hash families , 2008, J. Comb. Theory, Ser. A.

[16]  T. Trung,et al.  A bound for separating hash families , 2010 .

[17]  Yin Zhang On Theory of Compressive Sensing via L_1-Minimization: Simple Derivations and Extensions , 2008 .

[18]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[19]  Charles J. Colbourn,et al.  A recursive construction for perfect hash families , 2009, J. Math. Cryptol..

[20]  Jean-Jacques Fuchs,et al.  On sparse representations in arbitrary redundant bases , 2004, IEEE Transactions on Information Theory.

[21]  Piotr Indyk,et al.  Combining geometry and combinatorics: A unified approach to sparse signal recovery , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[22]  Jean-Jacques Fuchs,et al.  Recovery of exact sparse representations in the presence of bounded noise , 2005, IEEE Transactions on Information Theory.

[23]  Noga Alon,et al.  Explicit construction of exponential sized families of k-independent sets , 1986, Discret. Math..

[24]  Weiyu Xu,et al.  Efficient Compressive Sensing with Deterministic Guarantees Using Expander Graphs , 2007, 2007 IEEE Information Theory Workshop.

[25]  Michael Elad,et al.  A generalized uncertainty principle and sparse representation in pairs of bases , 2002, IEEE Trans. Inf. Theory.

[26]  A.C. Gilbert,et al.  Group testing and sparse signal recovery , 2008, 2008 42nd Asilomar Conference on Signals, Systems and Computers.

[27]  Charles J. Colbourn,et al.  Constructing Perfect Hash Families Using a Greedy Algorithm , 2008 .

[28]  George Havas,et al.  Perfect Hashing , 1997, Theor. Comput. Sci..

[29]  D. Donoho For most large underdetermined systems of equations, the minimal 𝓁1‐norm near‐solution approximates the sparsest near‐solution , 2006 .

[30]  C. Colbourn,et al.  Heterogeneous Hash Families and Covering Arrays , 2010 .

[31]  Graham Cormode,et al.  Combinatorial Algorithms for Compressed Sensing , 2006 .

[32]  Tran van Trung,et al.  On t-Covering Arrays , 2004, Des. Codes Cryptogr..

[33]  R. Vershynin,et al.  One sketch for all: fast algorithms for compressed sensing , 2007, STOC '07.

[34]  Jessica Staddon,et al.  Combinatorial properties of frameproof and traceability codes , 2001, IEEE Trans. Inf. Theory.

[35]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[36]  Tran van Trung,et al.  Bounds for separating hash families , 2011, J. Comb. Theory, Ser. A.

[37]  Charles J. Colbourn,et al.  Linear hash families and forbidden configurations , 2009, Des. Codes Cryptogr..

[38]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[39]  R.G. Baraniuk,et al.  Compressive Sensing [Lecture Notes] , 2007, IEEE Signal Processing Magazine.

[40]  Weiyu Xu,et al.  Compressed sensing - probabilistic analysis of a null-space characterization , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[41]  Douglas R. Stinson,et al.  Combinatorial Properties and Constructions of Traceability Schemes and Frameproof Codes , 1998, SIAM J. Discret. Math..

[42]  Mark A. Iwen,et al.  Combinatorial Sublinear-Time Fourier Algorithms , 2010, Found. Comput. Math..

[43]  Ronald A. DeVore,et al.  Deterministic constructions of compressed sensing matrices , 2007, J. Complex..

[44]  E.J. Candes Compressive Sampling , 2022 .

[45]  Charles J. Colbourn,et al.  Perfect Hash Families: Constructions and Existence , 2007, J. Math. Cryptol..

[46]  Rémi Gribonval,et al.  Sparse representations in unions of bases , 2003, IEEE Trans. Inf. Theory.

[47]  Emmanuel J. Cand The Restricted Isometry Property and Its Implications for Compressed Sensing , 2008 .

[48]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[49]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[50]  Tran van Trung,et al.  Explicit constructions for perfect hash families , 2008, Des. Codes Cryptogr..