Toward the syntheses of universal ligands for metal oxide surfaces: controlling surface functionality through click chemistry.

A new means for functionalizing metal oxide surfaces, specifically nanoparticles, is demostrated. This process involves the design of stable ligands that bind strongly to the surface of metal oxides and can undergo further chemical modification via click chemistry, with both small molecules as well as polymers, to yield metal oxide surfaces with tailored functionality. The nanoparticles are stable and easily dispersed in both polar and nonpolar solvents, a property that is controlled by the ligand. The resultant nanoparticles were characterized by TEM, TGA, FTIR, and NMR.