Inferring weed spatial distribution from multi-type data
暂无分享,去创建一个
Sabrina Gaba | Pascal Monestiez | Nicolas Munier-Jolain | A. Bourgeois | B Borgy | S. Soubeyrand | P. Monestiez | S. Soubeyrand | S. Gaba | A. Bourgeois | Benjamin Borgy | Nathalie Munier-Jolain
[1] Brett Whelan,et al. Sampling strategy is important for producing weed maps: a case study using kriging , 2002, Weed Science.
[2] M. Liebman,et al. Weed Management in Agroecosystems Ecological Approaches , 1988 .
[3] Jürgen Symanzik,et al. Statistical Analysis of Spatial Point Patterns , 2005, Technometrics.
[4] D. Stoyan,et al. Statistical Analysis and Modelling of Spatial Point Patterns , 2008 .
[5] Regis Chikowo,et al. Integrated Weed Management systems allow reduced reliance on herbicides and long-term weed control , 2009 .
[6] Brett Whelan,et al. Does kriging predict weed distributions accurately enough for site-specific weed control? , 2001 .
[7] Y. LindaJ.. Combining Incompatible Spatial Data , 2003 .
[8] Roger Woodard,et al. Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.
[9] D. Mortensen,et al. How good is your weed map? A comparison of spatial interpolators , 2003, Weed Science.
[10] P. Monestieza,et al. Geostatistical modelling of spatial distribution of Balaenoptera physalus in the Northwestern Mediterranean Sea from sparse count data and heterogeneous observation efforts , 2006 .
[11] Nicolas Munier-Jolain,et al. Weed seed predation increases with vegetation cover in perennial forage crops , 2010 .
[12] V. Deytieux,et al. Conception et évaluation multicritères de prototypes de systèmes de culture dans le cadre de la Protection Intégrée contre la flore adventice en grandes cultures. , 2008 .
[13] J. Møller,et al. Log Gaussian Cox Processes , 1998 .
[14] R. M. Menges. Allelopathic Effects of Palmer Amaranth (Amaranthus palmeri) on Seedling Growth , 1988, Weed Science.
[15] James S. Clark,et al. Why environmental scientists are becoming Bayesians , 2004 .
[16] Anders Brix,et al. Space‐time Multi Type Log Gaussian Cox Processes with a View to Modelling Weeds , 2001 .
[17] D. Stoyan,et al. Stochastic Geometry and Its Applications , 1989 .
[18] David E. Clay,et al. Sampling weed spatial variability on a fieldwide scale , 1999 .
[19] Alfred Stein,et al. Analyzing spatial count data, with an application to weed counts , 2007, Environmental and Ecological Statistics.
[20] P. Diggle,et al. Model‐based geostatistics , 2007 .
[21] Xiao-Li Meng,et al. POSTERIOR PREDICTIVE ASSESSMENT OF MODEL FITNESS VIA REALIZED DISCREPANCIES , 1996 .
[22] R. J. Holmes,et al. Post-dispersal weed seed predation by avian and non-avian predators , 2005 .
[23] A. Brix,et al. Spatio‐temporal Modelling of Weeds by Shot‐noise G Cox processes , 2002 .
[24] T. Heisel,et al. Annual weed distributions can be mapped with kriging , 1996 .
[25] J. Chilès,et al. Geostatistics: Modeling Spatial Uncertainty , 1999 .
[26] C. Wikle. Hierarchical Models in Environmental Science , 2003 .
[27] Niklas Lorén,et al. Spatial prediction of weed intensities from exact count data and image‐based estimates , 2009 .
[28] Edward L. McCoy,et al. Spatial Relationships Between Seedbank and Seedling Populations of Common Lambsquarters (Chenopodium album) and Annual Grasses , 1996, Weed Science.
[29] T. Mattfeldt. Stochastic Geometry and Its Applications , 1996 .
[30] J. Cardina,et al. Analysis of Spatial Distribution of Common Lambsquarters (Chenopodium album) in No-Till Soybean (Glycine max) , 1995, Weed Science.