Effect of imbalance and intracluster correlation coefficient in cluster randomized trials with binary outcomes

Cluster randomization trials are increasingly popular among healthcare researchers. Intact groups (called 'clusters') of subjects are randomized to receive different interventions and all subjects within a cluster receive the same intervention. In cluster randomized trials, a cluster is the unit of randomization and a subject is the unit of analysis. Variation in cluster sizes can affect the sample size estimate or the power of the study. Guittet et al. (2006) investigated the impact of an imbalance in cluster size on the power of trials with continuous outcomes through simulations. In this paper, we examine the impact of cluster size variation and intracluster correlation on the power of the study for binary outcomes through simulations. Because the sample size formula for cluster randomization trials is based on a large sample approximation, we evaluate the performance of the sample size formula with small sample sizes through simulation. Simulation study findings show that the sample size formula (m(p)) accounting for unequal cluster sizes yields empirical powers closer to the nominal power than the sample size formula (m(a)) for the average cluster size method. The differences in sample size estimates and empirical powers between m(a) and m(p) get smaller as the imbalance in cluster sizes gets smaller.

[1]  Javad Behboodian,et al.  Bmc Medical Research Methodology Open Access Sequential Boundaries Approach in Clinical Trials with Unequal Allocation Ratios , 2022 .

[2]  R. Ellen,et al.  Clinical Science A Longitudinal Study of Root Caries: Baseline and Incidence Data , 1985 .

[3]  Sin-Ho Jung,et al.  An Evaluation of Weighted Chi-Square Statistics for Clustered Binary Data , 2003 .

[4]  J. Simpson,et al.  Accounting for cluster randomization: a review of primary prevention trials, 1990 through 1993. , 1995, American journal of public health.

[5]  Allan Donner,et al.  Design and Analysis of Cluster Randomization Trials in Health Research , 2001 .

[6]  C. Perry,et al.  Results from a statewide approach to adolescent tobacco use prevention. , 1992, Preventive medicine.

[7]  H. Ahrens,et al.  On Two Measures of Unbalancedness in a One-Way Model and Their Relation to Efficiency , 1981 .

[8]  Samuel Kotz,et al.  Discrete Distributions: Distributions in Statistics , 1971 .

[9]  Sin-Ho Jung,et al.  Sample Size Calculation for Dichotomous Outcomes in Cluster Randomization Trials with Varying Cluster Size , 2003 .

[10]  Thomas R Ten Have,et al.  Reducing suicidal ideation and depressive symptoms in depressed older primary care patients: a randomized controlled trial. , 2004, JAMA.

[11]  Shelly J. Clark,et al.  Impact of the cancer risk intake system on patient-clinician discussions of tamoxifen, genetic counseling, and colonoscopy , 2005, Journal of General Internal Medicine.

[12]  A Donner,et al.  Analysis of Site-specific Data in Dental Studies , 1988, Journal of dental research.

[13]  Allan Donner,et al.  Accounting for expected attrition in the planning of community intervention trials , 2007, Statistics in medicine.

[14]  A Donner,et al.  The large-sample relative efficiency of the Mantel-Haenszel estimator in the fixed-strata case. , 1986, Biometrics.

[15]  A Donner,et al.  Statistical implications of the choice between a dichotomous or continuous trait in studies of interobserver agreement. , 1994, Biometrics.

[16]  N. L. Johnson,et al.  Distributions in Statistics: Discrete Distributions. , 1970 .

[17]  Amita K. Manatunga,et al.  Sample Size Estimation in Cluster Randomized Studies with Varying Cluster Size , 2001 .

[18]  Allan Donner,et al.  A Procedure for Generating Group Sizes from a One-way Classification with a Specified Degree of Imbalance , 1987 .

[19]  M. Eliasziw,et al.  On two approximations to the F‐distribution: Application to testing for intraclass correlation in family studies , 1989 .

[20]  Seung-Ho Kang,et al.  Sample size calculations for clustered binary data , 2001, Statistics in medicine.

[21]  Allan Donner,et al.  Confidence Interval Estimation of the Intraclass Correlation Coefficient for Binary Outcome Data , 2004, Biometrics.

[22]  C. Ahn An evaluation of simple methods for the estimation of a common odds ratio in clusters with variable size , 1997 .

[23]  A. Donner,et al.  Adjustment of Frequently Used Chi-square Procedures for the Effect of Site-to-Site Dependencies in the Analysis of Dental Data , 1989, Journal of dental research.

[24]  Philippe Ravaud,et al.  Planning a cluster randomized trial with unequal cluster sizes: practical issues involving continuous outcomes , 2006, BMC medical research methodology.

[25]  A. D. Lunn,et al.  A note on generating correlated binary variables , 1998 .