The International Soil Moisture Network: serving Earth system science for over a decade

Abstract. In 2009, the International Soil Moisture Network (ISMN) was initiated as a community effort, funded by the European Space Agency, to serve as a centralised data hosting facility for globally available in situ soil moisture measurements (Dorigo et al., 2011a, b). The ISMN brings together in situ soil moisture measurements collected and freely shared by a multitude of organisations, harmonizes them in terms of units and sampling rates, applies advanced quality control, and stores them in a database. Users can freely retrieve the data from this database through an online web portal (https://ismn.earth). Meanwhile, the ISMN has evolved into the primary in situ soil moisture reference database worldwide, as evidenced by more than 3000 active users and over 1000 scientific publications referencing the data sets provided by the network. As of December 2020, the ISMN now contains data of 65 networks and 2678 stations located all over the globe, with a time period spanning from 1952 to present.The number of networks and stations covered by the ISMN is still growing and many of the data sets contained in the database continue to be updated. The main scope of this paper is to inform readers about the evolution of the ISMN over the past decade,including a description of network and data set updates and quality control procedures. A comprehensive review of existing literature making use of ISMN data is also provided in order to identify current limitations in functionality and data usage, and to shape priorities for the next decade of operations of this unique community-based data repository.

Klaus Scipal | Jean-Pierre Wigneron | Jonas Ardö | Roberto Sabia | Mahta Moghaddam | Luca Brocca | Michael A. Palecki | Matthias Drusch | Wouter Dorigo | Isabella Pfeil | Mariette Vreugdenhil | Wolfgang Wagner | Günter Blöschl | Mel Woods | Nick van de Giesen | Gottfried Kirchengast | Jean-Christophe Calvet | Zhongbo Su | Kasturi Devi Kanniah | Alexander Loew | F. O. Annor | Alexander Gruber | Torbern Tagesson | Jérôme Demarty | Kristine M. Larson | Marek Zreda | Jaakko Ikonen | Heye Bogena | Minha Choi | Luca Zappa | Renato Morbidelli | Christoph Rudiger | Peter van Oevelen | Wolfgang Preimesberger | Suxia Liu | Stephan Dietrich | Angelika Xaver | Alan Robock | Xiang Zhang | Jeffrey P. Walker | Pankaj Kumar Rai | Irene Himmelbauer | Daniel Aberer | Lukas Schremmer | Ivana Petrakovic | Dennis Baldocchi | Julio Jesús Camarero | Giorgio Capello | Michael C. Cosh | Istvan Hajdu | Karsten Høgh Jensen | Ileen de Kat | Jenni Kyrouac | José Martínez Fernández | Cristian Mattar Bader | Jan P. Musial | Elise Osenga | Jarret Powers | Udo Rummel | Michael Strobel | Ryan C. Sullivan | Kun Yang | A. Robock | M. Moghaddam | D. Baldocchi | J. Ardö | W. Wagner | Z. Su | M. Palecki | W. Dorigo | M. Drusch | L. Brocca | J. Wigneron | Minha Choi | K. Scipal | A. Gruber | A. Loew | G. Blöschl | K. Jensen | J. Demarty | J. Calvet | C. Rudiger | Suxia Liu | N. Giesen | K. Kanniah | T. Tagesson | A. Xaver | P. V. Oevelen | M. Strobel | R. Sabia | M. Vreugdenhil | K. Larson | M. Zreda | H. Bogena | R. Sullivan | W. Preimesberger | L. Zappa | I. Pfeil | I. Hajdu | G. Kirchengast | J. Powers | J. Ikonen | F. Annor | J. Camarero | R. Morbidelli | G. Capello | J. Musial | J. Kyrouac | Kun Yang | U. Rummel | S. Dietrich | P. Rai | M. Woods | J. Walker | E. Osenga | Xiang Zhang | C. Bader | Irene Himmelbauer | Daniel Aberer | Lukas Schremmer | Ivana Petrakovic | M. Cosh | Wolfgang Preimesberger

[1]  Eugenio Cavallo,et al.  Long-term monitoring of soil management effects on runoff and soil erosion in sloping vineyards in Alto Monferrato (North–West Italy) , 2016 .

[2]  T. McMahon,et al.  Updated world map of the Köppen-Geiger climate classification , 2007 .

[3]  J. H. Lee,et al.  The consecutive dry days to trigger rainfall over West Africa , 2018 .

[4]  R. Govindaraju,et al.  Reassessment of a semi-analytical field-scale infiltration model through experiments under natural rainfall events , 2018, Journal of Hydrology.

[5]  Jean-Christophe Calvet,et al.  Deriving pedotransfer functions for soil quartz fraction in southern France from reverse modeling , 2016 .

[6]  W. Crow,et al.  Comparison of microwave remote sensing and land surface modeling for surface soil moisture climatology estimation , 2020 .

[7]  Jan W. Hopmans,et al.  Frequency, electrical conductivity and temperature analysis of a low-cost capacitance soil moisture sensor , 2008 .

[8]  Yi Y. Liu,et al.  Trend-preserving blending of passive and active microwave soil moisture retrievals , 2012 .

[9]  Mahta Moghaddam,et al.  Soil Moisture Profiles and Temperature Data from SoilSCAPE Sites, USA , 2016 .

[10]  M. Taufer,et al.  Gap-free global annual soil moisture: 15 km grids for 1991–2018 , 2019, Earth System Science Data.

[11]  Xavier Ceamanos,et al.  A parameterization of SEVIRI and MODIS daily surface albedo with soil moisture: Calibration and validation over southwestern France , 2014 .

[12]  H. Franssen,et al.  A 3 km spatially and temporally consistent European daily soil moisture reanalysis from 2000 to 2015 , 2020, Scientific Data.

[13]  Prashant K. Srivastava,et al.  A new model for an improved AMSR2 satellite soil moisture retrieval over agricultural areas , 2021, Comput. Electron. Agric..

[14]  K. Zhao,et al.  A continuous global record of near-surface soil freeze/thaw status from AMSR-E and AMSR2 data , 2019, International Journal of Remote Sensing.

[15]  W. Wagner,et al.  Monitoring multi-decadal satellite earth observation of soil moisture products through land surface reanalyses , 2013 .

[16]  Jarosław Zawadzki,et al.  Comparative study of soil moisture estimations from SMOS satellite mission, GLDAS database, and cosmic-ray neutrons measurements at COSMOS station in Eastern Poland , 2016 .

[17]  Seokhyeon Kim,et al.  A global comparison of alternate AMSR2 soil moisture products: Why do they differ? , 2015 .

[18]  Robert M. Parinussa,et al.  Soil Moisture Retrievals From the WindSat Spaceborne Polarimetric Microwave Radiometer , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Philip Marzahn,et al.  RADOLAN_API: An Hourly Soil Moisture Data Set Based on Weather Radar, Soil Properties and Reanalysis Temperature Data , 2021, Remote. Sens..

[20]  F. Chéruy,et al.  Satellite-based soil moisture provides missing link between summertime precipitation and surface temperature biases in CMIP5 simulations over conterminous United States , 2019, Scientific Reports.

[21]  Sergio M. Vicente-Serrano,et al.  SMOS‐derived soil moisture anomalies and drought indices: a comparative analysis using in situ measurements , 2015 .

[22]  J. Zeng,et al.  Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau , 2016 .

[23]  Renato Morbidelli,et al.  Infiltration-soil moisture redistribution under natural conditions: experimental evidence as a guideline for realizing simulation models , 2011 .

[24]  Jean-Pierre Wigneron,et al.  The merging of radiative transfer based surface soil moisture data from SMOS and AMSR-E , 2017 .

[25]  Venkat Lakshmi,et al.  Use of Cyclone Global Navigation Satellite System (CyGNSS) Observations for Estimation of Soil Moisture , 2018, Geophysical Research Letters.

[26]  R. Maity,et al.  Development of a spatially-varying Statistical Soil Moisture Profile model by coupling memory and forcing using hydrologic soil groups , 2019, Journal of Hydrology.

[27]  Luca Zappa,et al.  Deriving Field Scale Soil Moisture from Satellite Observations and Ground Measurements in a Hilly Agricultural Region , 2019, Remote. Sens..

[28]  Daniel Fiifi Tawia Hagan,et al.  Improved surface soil moisture anomalies from Fengyun-3B over the Jiangxi province of the People’s Republic of China , 2018, International Journal of Remote Sensing.

[29]  R. Vargas,et al.  Downscaling satellite soil moisture using geomorphometry and machine learning , 2019, bioRxiv.

[30]  M. Borga,et al.  Rainfall estimation from in situ soil moisture observations at several sites in Europe: an evaluation of the SM2RAIN algorithm , 2015 .

[31]  T. Jackson,et al.  Estimating surface soil moisture from SMAP observations using a Neural Network technique. , 2018, Remote sensing of environment.

[32]  R. Parinussa,et al.  A spatially coherent global soil moisture product with improved temporal resolution , 2014 .

[33]  Amen Al-Yaari,et al.  Rebuilding Long Time Series Global Soil Moisture Products Using the Neural Network Adopting the Microwave Vegetation Index , 2017, Remote. Sens..

[34]  M. Temimi,et al.  Inferring soil moisture variability in the Mediterrean Sea area using infrared and passive microwave observations , 2012 .

[35]  Wade T. Crow,et al.  A Monte Carlo based adaptive Kalman filtering framework for soil moisture data assimilation , 2019, Remote Sensing of Environment.

[36]  Laurent Bertino,et al.  An Evaluation of the EnKF vs. EnOI and the Assimilation of SMAP, SMOS and ESA CCI Soil Moisture Data over the Contiguous US , 2019, Remote. Sens..

[37]  W. J. Shuttleworth,et al.  COSMOS: the COsmic-ray Soil Moisture Observing System , 2012 .

[38]  S. Khodayar,et al.  Improvement of the soil-atmosphere interactions and subsequent heavy precipitation modelling by enhanced initialization using remotely sensed 1 km soil moisture information , 2020 .

[39]  A. Robock,et al.  The Global Soil Moisture Data Bank - Benchmark Soil Moisture Observations , 2005 .

[40]  A. Warrick,et al.  Retrieving global surface soil moisture from GRACE satellite gravity data , 2020 .

[41]  Jaroslaw Zawadzki,et al.  Soil moisture variability over Odra watershed: Comparison between SMOS and GLDAS data , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[42]  J. Kolassaa,et al.  Soil moisture retrieval from AMSR-E and ASCAT microwave observation synergy . Part 2 : Product evaluation , 2017 .

[43]  Jean-Pierre Wigneron,et al.  The AQUI Soil Moisture Network for Satellite Microwave Remote Sensing Validation in South-Western France , 2018, Remote. Sens..

[44]  I. Hoteit,et al.  Assessing data assimilation frameworks for using multi-mission satellite products in a hydrological context. , 2019, The Science of the total environment.

[45]  Xing Yuan,et al.  Do Lateral Flows Matter for the Hyperresolution Land Surface Modeling? , 2017 .

[46]  Jonas Ardö,et al.  A New Retrieval Algorithm for Soil Moisture Index from Thermal Infrared Sensor On-Board Geostationary Satellites over Europe and Africa and Its Validation , 2019, Remote. Sens..

[47]  Venkat Lakshmi,et al.  Soil Moisture Remote Sensing: State‐of‐the‐Science , 2017 .

[48]  A. Leuprecht,et al.  Wegenernet A Pioneering High-Resolution Network for Monitoring Weather and Climate , 2014 .

[49]  W. Crow,et al.  Estimating Spatial Sampling Errors in Coarse-Scale Soil Moisture Estimates Derived from Point-Scale Observations , 2010 .

[50]  R. Maity,et al.  Statistical Modelling of Vertical Soil Moisture Profile: Coupling of Memory and Forcing , 2016, Water Resources Management.

[51]  Peng Rao,et al.  Spatial Downscaling of the FY3B Soil Moisture Using Random Forest Regression , 2019, 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics).

[52]  Sujay V. Kumar,et al.  Assimilation of Remotely Sensed Leaf Area Index into the Noah-MP Land Surface Model: Impacts on Water and Carbon Fluxes and States over the Continental United States , 2019, Journal of Hydrometeorology.

[53]  Luca Brocca,et al.  Toward Global Soil Moisture Monitoring With Sentinel-1: Harnessing Assets and Overcoming Obstacles , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[54]  George P. Petropoulos,et al.  Towards improved spatio-temporal resolution soil moisture retrievals from the synergy of SMOS and MSG SEVIRI spaceborne observations , 2016 .

[55]  Nazzareno Pierdicca,et al.  Analysis of ASCAT, SMOS, in-situ and land model soil moisture as a regionalized variable over Europe and North Africa , 2015 .

[56]  Wolfgang Wagner,et al.  Validation of the enhanced resolution ERS-2 scatterometer soil moisture product , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[57]  Martin Herold,et al.  An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor , 2017, Global change biology.

[58]  N. Pradhan Estimating growing-season root zone soil moisture from vegetation index-based evapotranspiration fraction and soil properties in the Northwest Mountain region, USA , 2019, Hydrological Sciences Journal.

[59]  Y. Kerr,et al.  Comparing soil moisture retrievals from SMOS and ASCAT over France , 2011 .

[60]  Luca Brocca,et al.  Absolute versus temporal anomaly and percent of saturation soil moisture spatial variability for six networks worldwide , 2014 .

[61]  Mariette Vreugdenhil,et al.  Towards Including Dynamic Vegetation Parameters in the EUMETSAT H SAF ASCAT Soil Moisture Products , 2021, Remote. Sens..

[62]  Bin Fang,et al.  AMSR2 Soil Moisture Downscaling Using Temperature and Vegetation Data , 2018, Remote. Sens..

[63]  N. McDowell,et al.  The pantropical response of soil moisture to El Niño , 2019, Hydrology and Earth System Sciences.

[64]  E. Wood,et al.  Four decades of microwave satellite soil moisture observations: Part 2. Product validation and inter-satellite comparisons , 2017 .

[65]  J. Wigneron,et al.  Exploiting the synergy between SMAP and SMOS to improve brightness temperature simulations and soil moisture retrievals in arid regions , 2018 .

[66]  Emanuele Santi,et al.  Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation , 2013 .

[67]  J. Camarero,et al.  Similar diurnal, seasonal and annual rhythms in radial root expansion across two coexisting Mediterranean oak species. , 2020, Tree physiology.

[68]  Hongxing Liu,et al.  DSCALE_mod16: A Model for Disaggregating Microwave Satellite Soil Moisture with Land Surface Evapotranspiration Products and Gridded Meteorological Data , 2020, Remote. Sens..

[69]  Wolfgang Wagner,et al.  Root-zone plant available water estimation using the SMOS-derived soil water index , 2016 .

[70]  Nemesio J. Rodríguez-Fernández,et al.  Global SMOS Soil Moisture Retrievals from The Land Parameter Retrieval Model , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[71]  Wouter Dorigo,et al.  On the importance of satellite observed soil moisture , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[72]  Claudia Notarnicola,et al.  Detection of soil moisture anomalies based on Sentinel-1 , 2019, Physics and Chemistry of the Earth, Parts A/B/C.

[73]  Johan Alexander Huisman,et al.  On the Accuracy of Factory-Calibrated Low-Cost Soil Water Content Sensors , 2019, Sensors.

[74]  Wade T. Crow,et al.  Estimating error cross‐correlations in soil moisture data sets using extended collocation analysis , 2016 .

[75]  R. Knight,et al.  Soil Moisture Measurement for Ecological and Hydrological Watershed‐Scale Observatories: A Review , 2008 .

[76]  Factors determining spatio-temporal variations of soil moisture using microwave data , 2017, 2017 International Conference on Emerging Trends in Computing and Communication Technologies (ICETCCT).

[77]  Drew Hemment,et al.  Citizen observatory based soil moisture monitoring – the GROW example , 2019, Hungarian Geographical Bulletin.

[78]  Roman Lukyanenko,et al.  Citizen Science: An Information Quality Research Frontier , 2019, Information Systems Frontiers.

[79]  G. Vulpiani,et al.  Definition and impact of a quality index for radar-based reference measurements in the H-SAF precipitation product validation , 2013 .

[80]  Minjiao Lu,et al.  Automated general temperature correction method for dielectric soil moisture sensors , 2017 .

[81]  George P. Petropoulos,et al.  An Operational In Situ Soil Moisture & Soil Temperature Monitoring Network for West Wales, UK: The WSMN Network , 2017, Sensors.

[82]  Philippe Richaume,et al.  SMOS near-real-time soil moisture product: processor overview and first validation results , 2017 .

[83]  Mingyan Liu,et al.  A Wireless Soil Moisture Smart Sensor Web Using Physics-Based Optimal Control: Concept and Initial Demonstrations , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[84]  Luca Brocca,et al.  Soil moisture spatial variability in experimental areas of central Italy , 2007 .

[85]  P. Coulibaly,et al.  Estimating Root Zone Soil Moisture at Continental Scale Using Neural Networks , 2017 .

[86]  Michael H. Cosh,et al.  Toward operational validation systems for global satellite-based terrestrial essential climate variables , 2021, Int. J. Appl. Earth Obs. Geoinformation.

[87]  W. Mauser,et al.  Analysis of SMOS brightness temperature and vegetation optical depth data with coupled land surface and radiative transfer models in Southern Germany , 2012 .

[88]  Matthias Drusch,et al.  Global Automated Quality Control of In Situ Soil Moisture Data from the International Soil Moisture Network , 2013 .

[89]  Shivam Tripathi,et al.  Laboratory Calibration and Performance Evaluation of Low-Cost Capacitive and Very Low-Cost Resistive Soil Moisture Sensors , 2020, Sensors.

[90]  Zong‐Liang Yang,et al.  Multi-sensor land data assimilation: Toward a robust global soil moisture and snow estimation , 2018, Remote Sensing of Environment.

[91]  Ali Cafer Gürbüz,et al.  High Spatio-Temporal Resolution CYGNSS Soil Moisture Estimates Using Artificial Neural Networks , 2019, Remote. Sens..

[92]  Wei Zhao,et al.  A comparison study on empirical microwave soil moisture downscaling methods based on the integration of microwave-optical/IR data on the Tibetan Plateau , 2015 .

[93]  Lun Gao,et al.  A Spatially Constrained Multichannel Algorithm for Inversion of a First-Order Microwave Emission Model at L-Band , 2020, IEEE Transactions on Geoscience and Remote Sensing.

[94]  Yi Y. Liu,et al.  Global surface soil moisture from the Microwave Radiation Imager onboard the Fengyun-3B satellite , 2014 .

[95]  Feng Mao,et al.  Low-Cost Environmental Sensor Networks: Recent Advances and Future Directions , 2019, Front. Earth Sci..

[96]  W. Wagner,et al.  Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data , 2014 .

[97]  Jungho Im,et al.  A Novel Bias Correction Method for Soil Moisture and Ocean Salinity (SMOS) Soil Moisture: Retrieval Ensembles , 2015, Remote. Sens..

[98]  Qiusheng Wu,et al.  Evaluation of AMSR2 soil moisture products over the contiguous United States using in situ data from the International Soil Moisture Network , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[99]  Nunzio Romano,et al.  Soil moisture at local scale: Measurements and simulations , 2014 .

[100]  Lars Isaksen,et al.  Soil temperature at ECMWF: An assessment using ground‐based observations , 2015 .

[101]  Stefan Metzger,et al.  Detecting impacts of extreme events with ecological in situ monitoring networks , 2017 .

[102]  Wouter Dorigo,et al.  Validation of the ASCAT Soil Water Index using in situ data from the International Soil Moisture Network , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[103]  Steven M Quiring,et al.  Confronting weather and climate models with observational data from soil moisture networks over the United States. , 2016, Journal of hydrometeorology.

[104]  A. Massa,et al.  Wireless Sensor Network Deployment for Monitoring Soil Moisture Dynamics at the Field Scale , 2009 .

[105]  Clément Albergel,et al.  Assimilation of surface albedo and vegetation states from satellite observations and their impact on numerical weather prediction , 2015 .

[106]  Muddu Sekhar,et al.  Validation of Spaceborne and Modelled Surface Soil Moisture Products with Cosmic-Ray Neutron Probes , 2017, Remote. Sens..

[107]  J.-P. Wigneron,et al.  Validation practices for satellite soil moisture retrievals: What are (the) errors? , 2020 .

[108]  Evan J. Coopersmith,et al.  Comparing AMSR-E soil moisture estimates to the extended record of the U.S. Climate Reference Network (USCRN) , 2015 .

[109]  Philip Marzahn,et al.  Global assessments of two blended microwave soil moisture products CCI and SMOPS with in-situ measurements and reanalysis data , 2021, Int. J. Appl. Earth Obs. Geoinformation.

[110]  Margaret Kosmala,et al.  Assessing data quality in citizen science (preprint) , 2016, bioRxiv.

[111]  N. Lu,et al.  Comprehensive assessment of Fengyun-3 satellites derived soil moisture with in-situ measurements across the globe , 2021 .

[112]  Li Bai,et al.  Evaluation of Two SMAP Soil Moisture Retrievals Using Modeled- and Ground-Based Measurements , 2019, Remote. Sens..

[113]  O. Merlin,et al.  Extending the Spatio-Temporal Applicability of DISPATCH Soil Moisture Downscaling Algorithm: A Study Case Using SMAP, MODIS and Sentinel-3 Data , 2021, Frontiers in Environmental Science.

[114]  Joaquim Ballabrera-Poy,et al.  Dominant Features of Global Surface Soil Moisture Variability Observed by the SMOS Satellite , 2019, Remote. Sens..

[115]  Sonia I. Seneviratne,et al.  Spatial representativeness of soil moisture using in situ, remote sensing, and land reanalysis data , 2015 .

[116]  P. Ciais,et al.  Evaluation of ORCHIDEE-MICT-simulated soil moisture over China and impacts of different atmospheric forcing data , 2018, Hydrology and Earth System Sciences.

[117]  Liren Ji,et al.  Relationship of summer soil moisture with early winter monsoon and air temperature over eastern China , 2012 .

[118]  T. Jackson,et al.  Field observations of soil moisture variability across scales , 2008 .

[119]  Q. Yuan,et al.  Generating seamless global daily AMSR2 soil moisture (SGD-SM) long-term products for the years 2013–2019 , 2021 .

[120]  Wouter Dorigo,et al.  Estimation of the temporal autocorrelation structure by the collocation technique with an emphasis on soil moisture studies , 2013 .

[121]  Jean-Pierre Wigneron,et al.  Comparison of soil moisture retrieval algorithms based on the synergy between SMAP and SMOS-IC , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[122]  M. Biddoccu,et al.  Local- and plot-scale measurements of soil moisture: Time and spatially resolved field techniques in plain, hill and mountain sites , 2017 .

[123]  R. Orth,et al.  Global soil moisture data derived through machine learning trained with in-situ measurements , 2021, Scientific Data.

[124]  Francesca Pianosi,et al.  A large-scale simulation model to assess karstic groundwater recharge over Europe and the Mediterranean , 2015, Geoscientific Model Development.

[125]  P. Rosnay,et al.  CDOP 2 _ VS 12 _ 02 Root-zone soil moisture index complementary validation at global scale based on triple collocation method . Comparison with State-OfThe-Art global scale root-zone soil moisture products , 2013 .

[126]  Matthias Drusch,et al.  Soil Moisture Information Content in SMOS, SMAP, AMSR2, and ASCAT Level-1 Data Over Selected In Situ Sites , 2020, IEEE Geoscience and Remote Sensing Letters.

[127]  J. Thepaut,et al.  The ERA5 global reanalysis , 2020, Quarterly Journal of the Royal Meteorological Society.

[128]  Wouter Dorigo,et al.  Homogeneity of a global multisatellite soil moisture climate data record , 2016 .

[129]  W. Wagner,et al.  Combining satellite observations to develop a global soil moisture product for near-real-time applications , 2016 .

[130]  D. Giménez,et al.  Temporal dynamics of subsurface soil water content estimated from surface measurement using wavelet transform , 2018 .

[131]  R. Bonney,et al.  Citizen Science: A Developing Tool for Expanding Science Knowledge and Scientific Literacy , 2009 .

[132]  W. Wagner,et al.  Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe , 2011 .

[133]  M. Cosh,et al.  A long term global daily soil moisture dataset derived from AMSR-E and AMSR2 (2002–2019) , 2021, Scientific data.

[134]  A. Flammini,et al.  Soil water content vertical profiles under natural conditions: matching of experiments and simulations by a conceptual model , 2014 .

[135]  Daniel Fiifi Tawia Hagan,et al.  Maximizing Temporal Correlations in Long-Term Global Satellite Soil Moisture Data-Merging , 2020, Remote. Sens..

[136]  John S. Kimball,et al.  Passive Microwave Remote Sensing of Soil Moisture Based on Dynamic Vegetation Scattering Properties for AMSR-E , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[137]  Volker Wulfmeyer,et al.  Parameterization of Vegetation Scattering Albedo in the Tau-Omega Model for Soil Moisture Retrieval on Croplands , 2020, Remote. Sens..

[138]  I. P. Senanayake,et al.  An in-situ data based model to downscale radiometric satellite soil moisture products in the Upper Hunter Region of NSW, Australia , 2019, Journal of Hydrology.

[139]  Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors , 2021, Hydrology and Earth System Sciences.

[140]  Xin Li,et al.  Retrieval of High-Resolution Soil Moisture through Combination of Sentinel-1 and Sentinel-2 Data , 2020, Remote. Sens..

[141]  J. Zawadzki,et al.  Estimation of soil moisture across broad landscapes of Georgia and South Carolina using the triangle method applied to MODIS satellite imagery , 2017 .

[142]  Yi Y. Liu,et al.  Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals , 2011 .

[143]  E. Small,et al.  Estimating inundation extent using CYGNSS data: A conceptual modeling study , 2020 .

[144]  Cristian Mattar,et al.  The LAB-Net Soil Moisture Network: Application to Thermal Remote Sensing and Surface Energy Balance , 2016, Data.

[145]  Nengcheng Chen,et al.  Integrated open geospatial web service enabled cyber-physical information infrastructure for precision agriculture monitoring , 2015, Comput. Electron. Agric..

[146]  W. Wagner,et al.  Skill and Global Trend Analysis of Soil Moisture from Reanalyses and Microwave Remote Sensing , 2013 .

[147]  Frederic Bartumeus,et al.  Citizen science provides a reliable and scalable tool to track disease-carrying mosquitoes , 2017, Nature Communications.

[148]  Minha Choi,et al.  Evaluation of the soil water content using cosmic-ray neutron probe in a heterogeneous monsoon climate-dominated region , 2017 .

[149]  Lars Isaksen,et al.  Soil Moisture Analyses at ECMWF: Evaluation Using Global Ground-Based In Situ Observations , 2012 .

[150]  Robert M. Parinussa,et al.  Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors , 2020, Hydrology and Earth System Sciences.

[151]  BACKSCATTERING FROM THE NEAR-SURFACE LAYER OF THAWED/FROZEN SOILS OF ALASKA FROM SENTINEL 1 RADAR DATA , 2019, Radioelectronics. Nanosystems. Information Technologies.

[152]  K. Lim,et al.  Development of Dynamic Ground Water Data Assimilation for Quantifying Soil Hydraulic Properties from Remotely Sensed Soil Moisture , 2016 .

[153]  Claudia Notarnicola,et al.  A Machine Learning-Based Approach for Surface Soil Moisture Estimations with Google Earth Engine , 2021, Remote. Sens..

[154]  P. de Rosnay,et al.  The New Stand-Alone Surface Analysis at ECMWF: Implications for Land–Atmosphere DA Coupling , 2019, Journal of Hydrometeorology.

[155]  Z. Pu,et al.  Improving Near-Surface Short-Range Weather Forecasts Using Strongly Coupled Land–Atmosphere Data Assimilation with GSI-EnKF , 2020, Monthly Weather Review.

[156]  S. Tian Monitoring and forecasting drought through the assimilation of satellite water observations , 2018 .

[157]  Sujay V. Kumar,et al.  A High‐Resolution Land Data Assimilation System Optimized for the Western United States , 2021, JAWRA Journal of the American Water Resources Association.

[158]  J. Martínez-Fernández,et al.  Soil moisture memory and soil properties: An analysis with the stored precipitation fraction , 2020 .

[159]  Yan Wang,et al.  Contributions of climate change and groundwater extraction to soil moisture trends , 2019, Earth System Dynamics.

[160]  Scott A. Isard,et al.  A Soil Moisture Climatology of Illinois , 1994 .

[161]  S. Verrier Multifractal and multiscale entropy scaling of in-situ soil moisture time series: Study of SMOSMANIA network data, southwestern France , 2020 .

[162]  Andrzej Wilczek,et al.  A TDR-Based Soil Moisture Monitoring System with Simultaneous Measurement of Soil Temperature and Electrical Conductivity , 2012, Sensors.

[163]  J. Calvet,et al.  Deriving surface soil moisture from reflected GNSS signal observations from a grassland site in southwestern France , 2017 .

[164]  P. Coulibaly,et al.  Root‐zone soil moisture estimation using data‐driven methods , 2014 .

[165]  Hao Sun,et al.  Evaluating Downscaling Factors of Microwave Satellite Soil Moisture Based on Machine Learning Method , 2021, Remote. Sens..

[166]  Kenneth J. Tobin,et al.  Multi-decadal analysis of root-zone soil moisture applying the exponential filter across CONUS , 2017 .

[167]  Niko E. C. Verhoest,et al.  A review of spatial downscaling of satellite remotely sensed soil moisture , 2017 .

[168]  P. de Rosnay,et al.  Data assimilation for continuous global assessment of severe conditions over terrestrial surfaces , 2019, Hydrology and Earth System Sciences.

[169]  J. Calvet,et al.  Identification of soil-cooling rains in southern France from soil temperature and soil moisture observations , 2018, Atmospheric Chemistry and Physics.

[170]  B. Fu,et al.  An improved global remote-sensing-based surface soil moisture (RSSSM) dataset covering 2003–2018 , 2021, Earth System Science Data.

[171]  Nengcheng Chen,et al.  Cyber-Physical Geographical Information Service-Enabled Control of Diverse In-Situ Sensors , 2015, Sensors.

[172]  A. Gonsamo,et al.  Soil Moisture Active Passive Improves Global Soil Moisture Simulation in a Land Surface Scheme and Reveals Strong Irrigation Signals Over Farmlands , 2021, Geophysical Research Letters.

[173]  Sonia I. Seneviratne,et al.  Comparison of four soil moisture sensor types under field conditions in Switzerland , 2012 .

[174]  Filipe Aires,et al.  Global downscaling of remotely sensed soil moisture using neural networks , 2018, Hydrology and Earth System Sciences.

[175]  Alena Bartonova,et al.  Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? , 2017, Environment international.

[176]  J. Ardö,et al.  Ecosystem properties of semiarid savanna grassland in West Africa and its relationship with environmental variability , 2015, Global change biology.

[177]  A. Robock,et al.  The Global Soil Moisture Data Bank , 2000 .

[178]  Y. Kerr,et al.  State of the Art in Large-Scale Soil Moisture Monitoring , 2013 .

[179]  Xiaojing Bai,et al.  Assessment of Different Vegetation Parameters for Parameterizing the Coupled Water Cloud Model and Advanced Integral Equation Model for Soil Moisture Retrieval Using Time Series Sentinel-1A Data , 2019, Photogrammetric Engineering & Remote Sensing.

[180]  A. Al Bitar,et al.  Evaluating soil moisture retrievals from ESA's SMOS and NASA's SMAP brightness temperature datasets. , 2017, Remote sensing of environment.

[181]  A. Robock,et al.  A New International Network for in Situ Soil Moisture Data , 2011 .

[182]  S. M. Jong,et al.  Observation uncertainty of satellite soil moisture products determined with physically-based modeling , 2012 .

[183]  F. Castelli,et al.  Production of a 5-years long dataset of Soil Moisture Maps on Italian Territory with an Operational Algorithm , 2012 .

[184]  Venkat Lakshmi,et al.  Very High Spatial Resolution Downscaled SMAP Radiometer Soil Moisture in the CONUS Using VIIRS/MODIS Data , 2021, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[185]  W. Crow,et al.  Impact of Rescaling Approaches in Simple Fusion of Soil Moisture Products , 2019, Water Resources Research.

[186]  Zhao-Liang Li,et al.  Preliminary validation of two temporal parameter-based soil moisture retrieval models using a satellite product and in situ soil moisture measurements over the REMEDHUS network , 2016 .

[187]  Thomas J. Jackson,et al.  Validation of Advanced Microwave Scanning Radiometer Soil Moisture Products , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[188]  T. Jackson,et al.  Evaluation and validation of a high spatial resolution satellite soil moisture product over the Continental United States , 2020 .

[189]  Wolfram Mauser,et al.  Uncertainty Assessment of the SMOS Validation in the Upper Danube Catchment , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[190]  B. Usowicz,et al.  Strategies for validating and directions for employing SMOS data, in the Cal-Val project SWEX (3275) for wetlands , 2010 .

[191]  A. Al Bitar,et al.  Overview of SMOS performance in terms of global soil moisture monitoring after six years in operation , 2016 .

[192]  P. Coulibaly,et al.  Reducing multiplicative bias of satellite soil moisture retrievals , 2015 .

[193]  Seokhyeon Kim,et al.  A framework for combining multiple soil moisture retrievals based on maximizing temporal correlation , 2015 .

[194]  Klaus Scipal,et al.  Simultaneous assimilation of SMOS soil moisture and atmospheric CO2 in-situ observations to constrain the global terrestrial carbon cycle , 2016 .

[195]  T. Jackson,et al.  The USDA Natural Resources Conservation Service Soil Climate Analysis Network (SCAN) , 2007 .

[196]  Frédéric Baret,et al.  Suitability of modelled and remotely sensed essential climate variables for monitoring Euro-Mediterranean droughts , 2013 .

[197]  G. Lannoy,et al.  SMOS-IC data record of soil moisture and L-VOD: Historical development, applications and perspectives , 2021, Remote Sensing of Environment.

[198]  Kun Yang,et al.  Validation of the global land data assimilation system based on measurements of soil temperature profiles , 2016 .

[199]  W. Oechel,et al.  FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities , 2001 .

[200]  Philippe Richaume,et al.  SMOS Neural Network Soil Moisture Data Assimilation in a Land Surface Model and Atmospheric Impact , 2019, Remote. Sens..

[201]  Yi Y. Liu,et al.  Error characterisation of global active and passive microwave soil moisture datasets. , 2010 .

[202]  R. Reichle,et al.  Assimilation of Satellite Soil Moisture for Improved Atmospheric Reanalyses , 2018, Monthly Weather Review.

[203]  R. Scott,et al.  Measuring soil moisture content non‐invasively at intermediate spatial scale using cosmic‐ray neutrons , 2008 .

[204]  Adriano Camps,et al.  Multi-Temporal Evaluation of Soil Moisture and Land Surface Temperature Dynamics Using in Situ and Satellite Observations , 2016, Remote. Sens..

[205]  Jiancheng Shi,et al.  The Soil Moisture Active Passive (SMAP) Mission , 2010, Proceedings of the IEEE.

[206]  G. Vachaud,et al.  Temporal Stability of Spatially Measured Soil Water Probability Density Function , 1985 .

[207]  W. Wagner,et al.  Global-scale assessment and combination of SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products , 2017 .

[208]  Luca Brocca,et al.  A physically based approach for the estimation of root-zone soil moisture from surface measurements , 2012 .

[209]  Yann Kerr,et al.  The AACES field experiments: SMOS calibration and validation across the Murrumbidgee River catchment , 2012 .

[210]  W. R. Gardner,et al.  DETERMINATION OF SOIL MOISTURE BY NEUTRON SCATTERING , 1952 .

[211]  Sanjiv Kumar Potential Reemergence of Seasonal Soil Moisture Anomalies in North America , 2018, Journal of Climate.

[212]  Emanuele Santi,et al.  Robust Assessment of an Operational Algorithm for the Retrieval of Soil Moisture From AMSR-E Data in Central Italy , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[213]  Yi Y. Liu,et al.  ESA CCI Soil Moisture for improved Earth system understanding : State-of-the art and future directions , 2017 .

[214]  B. Mohanty,et al.  Development of non-parametric evolutionary algorithm for predicting soil moisture dynamics , 2018, Journal of Hydrology.

[215]  B. Thrasher,et al.  Soil moisture droughts under the retrospective and projected climate in India. , 2014 .

[216]  Irena Hajnsek,et al.  TERENO - Long-term monitoring network for terrestrial environmental research , 2012 .

[217]  R. Müller,et al.  Natural Hazards and Earth System Sciences , 2013 .

[218]  Amen Al-Yaari,et al.  The Aqui Network: Soil Moisture Sites in the “Les Landes” Forest and Graves Vineyards (Bordeaux Aquitaine Region, France) , 2018, IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium.

[219]  Y. Kerr,et al.  A global near-real-time soil moisture index monitor for food security using integrated SMOS and SMAP , 2020, Remote Sensing of Environment.

[220]  John Kochendorfer,et al.  U.S. Climate Reference Network Soil Moisture and Temperature Observations , 2013 .

[221]  J. Indu,et al.  Remote sensing data assimilation , 2020, Hydrological Sciences Journal.

[222]  Wade T. Crow,et al.  A Quasi-Global Approach to Improve Day-Time Satellite Surface Soil Moisture Anomalies through the Land Surface Temperature Input , 2016 .

[223]  H. Moradkhani,et al.  Downscaling SMAP Radiometer Soil Moisture Over the CONUS Using an Ensemble Learning Method , 2019, Water Resources Research.

[224]  Heather McNairn,et al.  Calibration and Evaluation of a Frequency Domain Reflectometry Sensor for Real‐Time Soil Moisture Monitoring , 2015 .

[225]  Adriano Camps,et al.  Analyzing Spatio-Temporal Factors to Estimate the Response Time between SMOS and In-Situ Soil Moisture at Different Depths , 2020, Remote. Sens..

[226]  Jiming Jin,et al.  Crop growth and irrigation interact to influence surface fluxes in a regional climate-cropland model (WRF3.3-CLM4crop) , 2015, Climate Dynamics.

[227]  R. Koster,et al.  Global Soil Moisture from Satellite Observations, Land Surface Models, and Ground Data: Implications for Data Assimilation , 2004 .

[228]  B. Fu,et al.  A new dataset of satellite observation-based global surface soil moisture covering 2003–2018 , 2020 .

[229]  Filipe Aires,et al.  Soil moisture retrieval from multi‐instrument observations: Information content analysis and retrieval methodology , 2013 .

[230]  R. Bras,et al.  A physically constrained inversion for high-resolution passive microwave retrieval of soil moisture and vegetation water content in L-band , 2019, Remote Sensing of Environment.

[231]  Wenbin Liu,et al.  Evaluation of ESA Active, Passive and Combined Soil Moisture Products Using Upscaled Ground Measurements , 2019, Sensors.

[232]  L. Brocca,et al.  Estimating the drainage rate from surface soil moisture drydowns: Application of DfD model to in situ soil moisture data , 2018, Journal of Hydrology.

[233]  Manuel Jiménez Buendía,et al.  Design and Calibration of a Low-Cost SDI-12 Soil Moisture Sensor , 2019, Sensors.

[234]  Estrella Olmedo,et al.  Validation of SMOS L2 and L3 soil moisture products over the Duero basin at different spatial scales , 2015 .

[235]  Nengcheng Chen,et al.  Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: A comprehensive assessment using global ground-based observations , 2019, Remote Sensing of Environment.

[236]  C. Cammalleri,et al.  On the value of combining different modelled soil moisture products for European drought monitoring , 2015 .

[237]  G. Petropoulos,et al.  SMAP Soil Moisture Product Assessment over Wales, U.K., Using Observations from the WSMN Ground Monitoring Network , 2021, Sustainability.

[238]  Ali Cafer Gürbüz,et al.  Machine Learning-Based CYGNSS Soil Moisture Estimates over ISMN sites in CONUS , 2020, Remote. Sens..

[239]  Erik Schultes,et al.  The FAIR Guiding Principles for scientific data management and stewardship , 2016, Scientific Data.

[240]  J. Pulliainen,et al.  Spatially Distributed Evaluation of ESA CCI Soil Moisture Products in a Northern Boreal Forest Environment , 2018 .

[241]  José Martínez-Fernández,et al.  Assessment of Root Zone Soil Moisture Estimations from SMAP, SMOS and MODIS Observations , 2018, Remote. Sens..

[242]  Zhao-Liang Li,et al.  Generation of continuous surface soil moisture dataset using combined optical and thermal infrared images , 2017 .

[243]  A. Robock,et al.  Spatial variation of soil moisture in China: Geostatistical characterization , 2001 .

[244]  Yongjun Zheng,et al.  LDAS-Monde Sequential Assimilation of Satellite Derived Observations Applied to the Contiguous US: An ERA-5 Driven Reanalysis of the Land Surface Variables , 2018, Remote. Sens..

[245]  X. Calbet,et al.  Validation practices for satellite‐based Earth observation data across communities , 2017 .

[246]  Irena Hajnsek,et al.  A Network of Terrestrial Environmental Observatories in Germany , 2011 .

[247]  R. Crapolicchio,et al.  An assessment of SMOS version 6.20 products through Triple and Quadruple Collocation techniques considering ASCAT, ERA/Interim LAND, ISMNand SMAP soil moisture data , 2016, 2016 14th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad).

[248]  Thomas Gumbricht,et al.  Detecting Trends in Wetland Extent from MODIS Derived Soil Moisture Estimates , 2018, Remote. Sens..

[249]  Patrick Hogan,et al.  Towards a high-density soil moisture network for the validation of SMAP in Petzenkirchen, Austria , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[250]  Jeffrey P. Walker,et al.  A soil moisture and temperature network for SMOS validation in Western Denmark , 2011 .

[251]  Thomas Jagdhuber,et al.  Assessment of Multi-Scale SMOS and SMAP Soil Moisture Products across the Iberian Peninsula , 2020, Remote. Sens..

[252]  T. Ochsner,et al.  Development and Evaluation of Soil Moisture‐Based Indices for Agricultural Drought Monitoring , 2019, Agronomy Journal.

[253]  Rao S. Govindaraju,et al.  Scaling of surface soil moisture over heterogeneous fields subjected to a single rainfall event , 2014 .

[254]  Arnaud Mialon,et al.  SMOS-IC: An Alternative SMOS Soil Moisture and Vegetation Optical Depth Product , 2017, Remote. Sens..

[255]  Georg Hoffmann,et al.  Simultaneous Assimilation of Remotely Sensed Soil Moisture and FAPAR for Improving Terrestrial Carbon Fluxes at Multiple Sites Using CCDAS , 2018, Remote. Sens..

[256]  George P. Petropoulos,et al.  Appraisal of SMAP Operational Soil Moisture Product from a Global Perspective , 2020, Remote. Sens..

[257]  Massimo Menenti,et al.  Improving the AMSR-E/NASA Soil Moisture Data Product Using In-Situ Measurements from the Tibetan Plateau , 2019, Remote. Sens..

[258]  Chun-Hsu Su,et al.  Evaluation of post-retrieval de-noising of active and passive microwave satellite soil moisture , 2015 .

[259]  Nazzareno Pierdicca,et al.  Error Characterization of Soil Moisture Satellite Products: Retrieving Error Cross-Correlation Through Extended Quadruple Collocation , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[260]  George P. Petropoulos,et al.  Surface soil moisture retrievals over partially vegetated areas from the synergy of Sentinel-1 and Landsat 8 data using a modified water-cloud model , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[261]  Jiancheng Shi,et al.  Potential soil moisture product from the Chinese HY-2 scanning microwave radiometer and its initial assessment , 2014 .

[262]  Johan Alexander Huisman,et al.  Dynamic response patterns of profile soil moisture wetting events under different land covers in the Mountainous area of the Heihe River Watershed, Northwest China , 2019, Agricultural and Forest Meteorology.

[263]  Wouter Dorigo,et al.  Using remotely sensed soil moisture for land-atmosphere coupling diagnostics: the role of surface vs. root-zone soil moisture variability. , 2014 .

[264]  Jia Xu,et al.  Soil Moisture Mapping from Satellites: An Intercomparison of SMAP, SMOS, FY3B, AMSR2, and ESA CCI over Two Dense Network Regions at Different Spatial Scales , 2017, Remote. Sens..

[265]  F. Frappart,et al.  Compared performances of SMOS-IC soil moisture and vegetation optical depth retrievals based on Tau-Omega and Two-Stream microwave emission models , 2020 .

[266]  Niko E. C. Verhoest,et al.  SMOS brightness temperature assimilation into the Community Land Model , 2017 .

[267]  Thomas J. Jackson,et al.  Downscaling and Validation of SMAP Radiometer Soil Moisture in CONUS , 2019, IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium.

[268]  Wade T. Crow,et al.  Assessment of the impact of spatial heterogeneity on microwave satellite soil moisture periodic error. , 2018, Remote sensing of environment.

[269]  T. Jackson,et al.  A Dielectric Mixing Model Accounting for Soil Organic Matter , 2019, Vadose Zone Journal.

[270]  Lun Gao,et al.  Microwave retrievals of soil moisture and vegetation optical depth with improved resolution using a combined constrained inversion algorithm: Application for SMAP satellite , 2020 .

[271]  A review , 2019 .

[272]  Philippe Richaume,et al.  Soil Moisture Retrieval Using Neural Networks: Application to SMOS , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[273]  Yohei Sawada,et al.  Quantifying Drought Propagation from Soil Moisture to Vegetation Dynamics Using a Newly Developed Ecohydrological Land Reanalysis , 2018, Remote. Sens..

[274]  Jie Yang,et al.  Soil Moisture Retrieval and Spatiotemporal Pattern Analysis Using Sentinel-1 Data of Dahra, Senegal , 2017, Remote. Sens..

[275]  Jianghao Wang,et al.  Hybrid Optimal Design of the Eco-Hydrological Wireless Sensor Network in the Middle Reach of the Heihe River Basin, China , 2014, Sensors.

[276]  José Martínez-Fernández,et al.  Validation of Aquarius Soil Moisture Products Over the Northwest of Spain: A Comparison With SMOS , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[277]  Chris Derksen,et al.  SMOS prototype algorithm for detecting autumn soil freezing , 2016 .

[278]  Nazzareno Pierdicca,et al.  Quadruple Collocation Analysis for Soil Moisture Product Assessment , 2015, IEEE Geoscience and Remote Sensing Letters.

[279]  Germana Scepi,et al.  Analysis of Increasing Flash Flood Frequency in the Densely Urbanized Coastline of the Campi Flegrei Volcanic Area, Italy , 2018, Front. Earth Sci..

[280]  Luca Brocca,et al.  Soil Moisture from Fusion of Scatterometer and SAR: Closing the Scale Gap with Temporal Filtering , 2018, Remote. Sens..

[281]  Martha C. Anderson,et al.  An intercomparison of remotely sensed soil moisture products at various spatial scales over the Iberian Peninsula , 2014 .

[282]  G. Kirchengast,et al.  WegenerNet high-resolution weather and climate data from 2007 to 2020 , 2021 .

[283]  Wouter Dorigo,et al.  A Preliminary Study toward Consistent Soil Moisture from AMSR2 , 2015 .

[284]  Rasmus Fensholt,et al.  Disaggregation of SMOS soil moisture over West Africa using the Temperature and Vegetation Dryness Index based on SEVIRI land surface parameters , 2018 .

[285]  Yann Kerr,et al.  Soil Moisture , 1922, Botanical Gazette.

[286]  Yaping Yang,et al.  Evaluation of Satellite-Based Soil Moisture Products over Four Different Continental In-Situ Measurements , 2018, Remote. Sens..

[287]  C. Ottlé,et al.  Evaluating and Optimizing Surface Soil Moisture Drydowns in the ORCHIDEE Land Surface Model at In Situ Locations , 2021, Journal of Hydrometeorology.

[288]  Luca Brocca,et al.  On the estimation of antecedent wetness conditions in rainfall–runoff modelling , 2008 .

[289]  Peili Wu,et al.  A comprehensive evaluation of soil moisture and soil temperature from third‐generation atmospheric and land reanalysis data sets , 2020, International Journal of Climatology.

[290]  J. Ardö A 10-year data set of basic meteorology and soil properties in central Sudan , 2013 .

[291]  K. Jensen,et al.  HOBE: The Danish Hydrological Observatory , 2018 .

[292]  A. Al Bitar,et al.  Testing regression equations to derive long-term global soil moisture datasets from passive microwave observations , 2016 .

[293]  Wade T. Crow,et al.  Application of Triple Collocation in Ground-Based Validation of Soil Moisture Active/Passive (SMAP) Level 2 Data Products , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[294]  N. Verhoest,et al.  GLEAM v3: satellite-based land evaporation and root-zone soil moisture , 2016 .

[295]  W. Dorigo,et al.  Evaluating the suitability of the consumer low-cost Parrot Flower Power soil moisture sensor for scientific environmental applications , 2019, Geoscientific Instrumentation, Methods and Data Systems.

[296]  Nazzareno Pierdicca,et al.  Soil moisture comparison through triple and quadruple collocation between: Metop, ERA, SMOS and in-situ data , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[297]  B. Fang,et al.  Drought monitoring using high spatial resolution soil moisture data over Australia in 2015–2019 , 2021 .

[298]  Jiali Shang,et al.  Detecting significant decreasing trends of land surface soil moisture in eastern China during the past three decades (1979–2010) , 2016 .

[299]  M. Sabarimalai Manikandan,et al.  Monitoring moisture of soil using low cost homemade Soil moisture sensor and Arduino UNO , 2016, 2016 3rd International Conference on Advanced Computing and Communication Systems (ICACCS).

[300]  S. Hutchinson,et al.  Validation and assessment of SPoRT-LIS surface soil moisture estimates for water resources management applications , 2018, Journal of Hydrology.

[301]  Wolfgang Wagner,et al.  Triple Collocation-Based Merging of Satellite Soil Moisture Retrievals , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[302]  Kelly K. Caylor,et al.  Validation of SMAP surface soil moisture products with core validation sites , 2017, Remote Sensing of Environment.

[303]  Alina Barbu,et al.  Comparing the ensemble and extended Kalman filters for in situ soil moisture assimilation with contrasting conditions , 2015 .

[304]  Dongryeol Ryu,et al.  Time-variant error characterization of SMAP and ASCAT soil moisture using Triple Collocation Analysis , 2021 .

[305]  H. Moradkhani,et al.  In-situ and triple-collocation based evaluations of eight global root zone soil moisture products , 2021 .

[306]  Kun-Shan Chen,et al.  A Preliminary Evaluation of the SMAP Radiometer Soil Moisture Product Over United States and Europe Using Ground-Based Measurements , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[307]  K. Dąbrowska-Zielińska,et al.  Derivation and validation of the high resolution satellite soil moisture products: a case study of the Biebrza Sentinel-1 validation sites , 2016 .

[308]  Yawei Wang,et al.  Toward the Estimation of Surface Soil Moisture Content Using Geostationary Satellite Data over Sparsely Vegetated Area , 2015, Remote. Sens..

[309]  Yaoming Ma,et al.  The Tibetan plateau observatory of plateau scale soil moisture and soil temperature, Tibet - Obs, for quantifying uncertainties in coarse resolution satellite and model products , 2011 .

[310]  N. Sánchez,et al.  A spatial downscaling approach for the SMAP passive surface soil moisture product using random forest regression , 2018 .

[311]  Z. Su,et al.  Seasonality and autocorrelation of satellite-derived soil moisture products , 2013 .

[312]  G. Leavesley,et al.  A MODELING FRAMEWORK FOR IMPROVED AGRICULTURAL WATER-SUPPLY FORECASTING , 2010 .

[313]  José Martínez-Fernández,et al.  Comparison of gap-filling techniques applied to the CCI soil moisture database in Southern Europe , 2021 .

[314]  W. Dorigo,et al.  A global water resources ensemble of hydrological models: the eartH2Observe Tier-1 dataset , 2016 .

[315]  Arnaud Mialon,et al.  A new calibration of the effective scattering albedo and soil roughness parameters in the SMOS SM retrieval algorithm , 2017, Int. J. Appl. Earth Obs. Geoinformation.

[316]  W. Wagner,et al.  The Impact of Quadratic Nonlinear Relations between Soil Moisture Products on Uncertainty Estimates from Triple Collocation Analysis and Two Quadratic Extensions , 2016 .

[317]  Global joint assimilation of GRACE and SMOS for improved estimation of root-zone soil moisture and vegetation response , 2019, Hydrology and Earth System Sciences.

[318]  Lazhu,et al.  A surface soil temperature retrieval algorithm based on AMSR-E multi-frequency brightness temperatures , 2017 .

[319]  Johan Alexander Huisman,et al.  Emerging methods for noninvasive sensing of soil moisture dynamics from field to catchment scale: a review , 2015 .

[320]  W. Wagner,et al.  Evaluation of the ESA CCI soil moisture product using ground-based observations , 2015 .

[321]  R. Govindaraju,et al.  In situ measurements of soil saturated hydraulic conductivity: Assessment of reliability through rainfall–runoff experiments , 2017 .

[322]  Jeffrey P. Walker,et al.  Upscaling sparse ground‐based soil moisture observations for the validation of coarse‐resolution satellite soil moisture products , 2012 .

[323]  Harsh L. Shah,et al.  Reconstruction of droughts in India using multiple land-surface models (1951–2015) , 2017 .

[324]  Yuanhong Deng,et al.  Spatiotemporal dynamics of soil moisture in the karst areas of China based on reanalysis and observations data , 2020, Journal of Hydrology.

[325]  Tongren Xu,et al.  Regional and Global Land Data Assimilation Systems: Innovations, Challenges, and Prospects , 2019, Journal of Meteorological Research.

[326]  Nengcheng Chen,et al.  A Machine Learning Based Reconstruction Method for Satellite Remote Sensing of Soil Moisture Images with In Situ Observations , 2017, Remote. Sens..

[327]  Katarzyna Dabrowska-Zielinska,et al.  Soil Moisture in the Biebrza Wetlands Retrieved from Sentinel-1 Imagery , 2018, Remote. Sens..

[328]  N. Rodionova Correlation of the Sentinel 1 Radar Data with Ground-Based Measurements of the Soil Temperature and Moisture , 2019, Izvestiya, Atmospheric and Oceanic Physics.

[329]  Charles E. Clark,et al.  Monte Carlo , 2006 .

[330]  Ainong Li,et al.  A Downscaling Method for Improving the Spatial Resolution of AMSR-E Derived Soil Moisture Product Based on MSG-SEVIRI Data , 2013, Remote. Sens..

[331]  V. Lakshmi,et al.  Identifying relative strengths of SMAP, SMOS-IC, and ASCAT to capture temporal variability , 2021 .

[332]  J. Zeng,et al.  A simplified physically-based algorithm for surface soil moisture retrieval using AMSR-E data , 2014, Frontiers of Earth Science.

[333]  Emanuele Santi,et al.  Performance inter-comparison of soil moisture retrieval models for the MetOp-A ASCAT instrument , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[334]  J. Pulliainen,et al.  The Sodankylä in-situ soil moisture observation network: an example application to Earth Observation data product evaluation , 2015 .

[335]  Luca Brocca,et al.  Antecedent Wetness Conditions based on ERS scatterometer data in support to rainfall-runoff modeling , 2009 .

[336]  Impacts of temperature effect removal on rainfall estimation from soil water content by using SM2RAIN algorithm , 2019, IOP Conference Series: Earth and Environmental Science.

[337]  Akhilesh S. Nair,et al.  Enhancing Noah Land Surface Model Prediction Skill over Indian Subcontinent by Assimilating SMOPS Blended Soil Moisture , 2016, Remote. Sens..

[338]  Steffen Fritz,et al.  The Role of Citizen Science in Earth Observation , 2017, Remote. Sens..

[339]  Nazzareno Pierdicca,et al.  Error characterization of SMOS, ASCAT, SMAP, ERA and ISMN soil moisture products: Automatic detection of cross-correlation error through extended quadruple collocation , 2017, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[340]  Y. Kerr,et al.  Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations , 2012 .

[341]  Kenneth W. Harrison,et al.  Land surface Verification Toolkit (LVT) – a generalized framework for land surface model evaluation , 2012 .

[342]  Emanuele Santi,et al.  Integration of microwave data from SMAP and AMSR2 for soil moisture monitoring in Italy , 2018, Remote Sensing of Environment.

[343]  Jean-Christophe Calvet,et al.  In situ soil moisture observations for the CAL/VAL of SMOS: the SMOSMANIA network , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[344]  A. B. Smith,et al.  The Murrumbidgee soil moisture monitoring network data set , 2012 .

[345]  E. Bazile,et al.  Land surface spinup for episodic modeling , 2014 .

[346]  Wenlong Jing,et al.  Generating high-resolution daily soil moisture by using spatial downscaling techniques: a comparison of six machine learning algorithms , 2020 .

[347]  Wei Gao,et al.  Validation of the ESA CCI soil moisture product in China , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[348]  M. Ek,et al.  Automated Quality Control of in Situ Soil Moisture from the North American Soil Moisture Database Using NLDAS-2 Products , 2015 .

[349]  Nazzareno Pierdicca,et al.  Multitemporal soil moisture retrieval from 3-days ERS-2 data: Comparison with ASCAT, SMOS and in situ measurements , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[350]  Yaning Chen,et al.  Quantifying the Effects of Climate and Vegetation on Soil Moisture in an Arid Area, China , 2019, Water.

[351]  Yuanhong Deng,et al.  Vegetation greening intensified soil drying in some semi-arid and arid areas of the world , 2020 .

[352]  Wolfgang Wagner,et al.  Frozen Soil Detection Based on Advanced Scatterometer Observations and Air Temperature Data as Part of Soil Moisture Retrieval , 2015, Remote. Sens..

[353]  C. Azorín-Molina,et al.  Performance of Drought Indices for Ecological, Agricultural, and Hydrological Applications , 2012 .

[354]  Jovan Kovačević,et al.  New Downscaling Approach Using ESA CCI SM Products for Obtaining High Resolution Surface Soil Moisture , 2020, Remote. Sens..

[355]  Gianpaolo Balsamo,et al.  A bare ground evaporation revision in the ECMWF land-surface scheme: evaluation of its impact using ground soil moisture and satellite microwave data , 2012 .

[356]  Wouter Dorigo,et al.  Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology , 2019, Earth System Science Data.

[357]  Chittaranjan Ray,et al.  Evaluating climate and soil effects on regional soil moisture spatial variability using EOFs , 2017 .

[358]  Yoshihiro Kawahara,et al.  Low-Cost Soil Moisture Profile Probe Using Thin-Film Capacitors and a Capacitive Touch Sensor , 2016, Sensors.

[359]  Yann Kerr,et al.  ESA's Soil Moisture and Ocean Salinity Mission: Mission Performance and Operations , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[360]  Drought Monitoring Using Tiangong-2 Wide-Band Spectrometer Data , 2018, Proceedings of the Tiangong-2 Remote Sensing Application Conference.

[361]  F. Pappenberger,et al.  ERA-Interim/Land: a global land surface reanalysis data set , 2015 .

[362]  Brian W. Barrett,et al.  Quality Assessment of the CCI ECV Soil Moisture Product Using ENVISAT ASAR Wide Swath Data over Spain, Ireland and Finland , 2015, Remote. Sens..

[363]  Alina Barbu,et al.  Integrating ASCAT surface soil moisture and GEOV1 leaf area index into the SURFEX modelling platform: a land data assimilation application over France , 2013 .

[364]  Yuanhong Deng,et al.  Comparison of soil moisture products from microwave remote sensing, land model, and reanalysis using global ground observations , 2019, Hydrological Processes.

[365]  L. Brocca,et al.  Modeling the response of soil moisture to climate variability in the Mediterranean region , 2020, Hydrology and Earth System Sciences.

[366]  I. Daliakopoulos,et al.  Regionalizing Root‐Zone Soil Moisture Estimates From ESA CCI Soil Water Index Using Machine Learning and Information on Soil, Vegetation, and Climate , 2021, Water Resources Research.

[367]  Guiling Wang,et al.  Quality Control and Evaluation of the Observed Daily Data in the North American Soil Moisture Database , 2019, Journal of Meteorological Research.

[368]  Tracy Scanlon,et al.  L-Band Soil Moisture Retrievals Using Microwave Based Temperature and Filtering. Towards Model-Independent Climate Data Records , 2021, Remote. Sens..

[369]  Wei Han,et al.  Using FengYun-3C VSM Data and Multivariate Models to Estimate Land Surface Soil Moisture , 2020, Remote. Sens..

[370]  R. Grayson,et al.  Scaling of Soil Moisture: A Hydrologic Perspective , 2002 .

[371]  Hui Lu,et al.  Development of passive microwave retrieval algorithm for estimation of surface soil temperature from AMSR-E data , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[372]  George P. Petropoulos,et al.  An appraisal of the accuracy of operational soil moisture estimates from SMOS MIRAS using validated in situ observations acquired in a Mediterranean environment , 2014 .

[373]  E. Small,et al.  Use of GPS receivers as a soil moisture network for water cycle studies , 2008 .

[374]  François Hupet,et al.  Estimating spatial mean root-zone soil moisture from point-scale observations , 2006 .

[375]  Ashish Sharma,et al.  A comprehensive validation of the SMAP Enhanced Level-3 Soil Moisture product using ground measurements over varied climates and landscapes , 2019, Remote Sensing of Environment.

[376]  Z. Pu,et al.  Examining the Impact of SMAP Soil Moisture Retrievals on Short-Range Weather Prediction under Weakly and Strongly Coupled Data Assimilation with WRF-Noah , 2019, Monthly Weather Review.

[377]  M. Cosh,et al.  Parameterization of Vegetation Scattering Albedo in the Tau-Omega Model for Soil Moisture Retrieval on Croplands , 2020, Remote. Sens..

[378]  Liyang Liu,et al.  Digitizing the thermal and hydrological parameters of land surface in subtropical China using AMSR-E brightness temperatures , 2017, Int. J. Digit. Earth.

[379]  Liping Di,et al.  Geospatial sensor web: A cyber-physical infrastructure for geoscience research and application , 2018, Earth-Science Reviews.

[380]  J. Giráldez,et al.  Experimental Analyses of the Evaporation Dynamics in Bare Soils under Natural Conditions , 2018, Water Resources Management.

[381]  Amen Al-Yaari,et al.  The Effect of Three Different Data Fusion Approaches on the Quality of Soil Moisture Retrievals from Multiple Passive Microwave Sensors , 2018, Remote. Sens..

[382]  José Martínez-Fernández,et al.  Validation of the SMOS L2 Soil Moisture Data in the REMEDHUS Network (Spain) , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[383]  T. Hoar,et al.  Global Soil Moisture Estimation by Assimilating AMSR-E Brightness Temperatures in a Coupled CLM4-RTM-DART System , 2016 .

[384]  Zhiyuan Pei,et al.  Application of Sentinel 2 data for drought monitoring in Texas, America , 2019, 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics).

[385]  Zhongbo Su,et al.  Validation of SMOS Soil Moisture Products over the Maqu and Twente Regions , 2012, Sensors.

[386]  Zhuguo Ma,et al.  Potential shifts in climate zones under a future global warming scenario using soil moisture classification , 2021, Climate Dynamics.

[387]  Mehrez Zribi,et al.  Estimating 500-m Resolution Soil Moisture Using Sentinel-1 and Optical Data Synergy , 2020, Water.

[388]  H. Vereecken,et al.  Evaluation of a low-cost soil water content sensor for wireless network applications , 2007 .

[389]  Liangsheng Shi,et al.  A robust data‐worth analysis framework for soil moisture flow by hybridizing sequential data assimilation and machine learning , 2020, Vadose Zone Journal.

[390]  Randal D. Koster,et al.  Assessment of MERRA-2 Land Surface Hydrology Estimates , 2017 .

[391]  A. Robock,et al.  The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements , 2011 .

[392]  Wouter Dorigo,et al.  Characterizing Coarse‐Scale Representativeness of in situ Soil Moisture Measurements from the International Soil Moisture Network , 2013 .

[393]  Mark Thyer,et al.  Goulburn River experimental catchment data set , 2007 .

[394]  Wouter Dorigo,et al.  Evaluation of remotely sensed soil moisture products using crowdsourced measurements , 2020, International Conference on Remote Sensing and Geoinformation of Environment.

[395]  Jouni Pulliainen,et al.  The Sodankylä in situ soil moisture observation network: an example application of ESA CCI soil moisture product evaluation , 2016 .

[396]  Guillermo E. Ponce-Campos,et al.  Impact of Varying Storm Intensity and Consecutive Dry Days on Grassland Soil Moisture , 2015 .

[397]  Liangpei Zhang,et al.  Quality Improvement of Satellite Soil Moisture Products by Fusing with In-Situ Measurements and GNSS-R Estimates in the Western Continental U.S , 2018, Remote. Sens..

[398]  Heye Bogena,et al.  TERENO: German network of terrestrial environmental observatories , 2016 .

[399]  M. Biddoccu,et al.  Effects of Tractor Passes on Hydrological and Soil Erosion Processes in Tilled and Grassed Vineyards , 2019, Water.

[400]  N. Sánchez,et al.  CCI soil moisture assessment with SMOS soil moisture and in situ data under different environmental conditions and spatial scales in Spain , 2018, Remote Sensing of Environment.

[401]  W. Mauser,et al.  The Upper Danube soil moisture validation site: measurements and activities , 2009 .

[402]  Guillaume Favreau,et al.  AMMA‐CATCH, a Critical Zone Observatory in West Africa Monitoring a Region in Transition , 2018 .

[403]  W. Wagner,et al.  Cross-evaluation of modelled and remotely sensed surface soil moisture with in situ data in southwestern France , 2010 .

[404]  W. Shao,et al.  Retrieval of Soil Moisture by Integrating Sentinel-1A and MODIS Data over Agricultural Fields , 2020, Water.

[405]  P. Richaume,et al.  Assessment and inter-comparison of recently developed/reprocessed microwave satellite soil moisture products using ISMN ground-based measurements , 2019, Remote Sensing of Environment.

[406]  Ranvir Singh,et al.  Field performance assessment and calibration of multi-depth AquaCheck capacitance-based soil moisture probes under permanent pasture for hill country soils , 2019, Agricultural Water Management.

[407]  Álvaro Moreno-Martínez,et al.  Machine Learning Methods for Spatial and Temporal Parameter Estimation , 2020 .

[408]  Niko E. C. Verhoest,et al.  Towards Estimating Land Evaporation at Field Scales Using GLEAM , 2018, Remote. Sens..

[409]  Seokhyeon Kim,et al.  Merging Alternate Remotely-Sensed Soil Moisture Retrievals Using a Non-Static Model Combination Approach , 2016, Remote. Sens..

[410]  Baoping Yan,et al.  A Nested Ecohydrological Wireless Sensor Network for Capturing the Surface Heterogeneity in the Midstream Areas of the Heihe River Basin, China , 2014, IEEE Geoscience and Remote Sensing Letters.

[411]  Y. Kerr,et al.  Sentinel-1 soil moisture at 1 km resolution: a validation study , 2021 .

[412]  W. Zeng,et al.  Data assimilation of uncalibrated soil moisture measurements from frequency-domain reflectometry , 2020 .

[413]  Nazzareno Pierdicca,et al.  A comparison of ASCAT and SMOS soil moisture retrievals over Europe and Northern Africa from 2010 to 2013 , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[414]  Matthias Zessner,et al.  The Hydrological Open Air Laboratory (HOAL) in Petzenkirchen: a hypothesis-driven observatory , 2016 .

[415]  Yann Kerr,et al.  Calibration of SMOS Soil Moisture Retrieval Algorithm: A Case of Tropical Site in Malaysia , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[416]  Ainong Li,et al.  Performance Evaluation of the Triangle-Based Empirical Soil Moisture Relationship Models Based on Landsat-5 TM Data and In Situ Measurements , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[417]  Wade T. Crow,et al.  Assimilation of Spatially Sparse In Situ Soil Moisture Networks into a Continuous Model Domain , 2018 .

[418]  J. Van doninck,et al.  Accounting for seasonality in a soil moisture change detection algorithm for ASAR Wide Swath time series , 2011 .

[419]  Yuanyuan Zha,et al.  A dynamic data-driven method for dealing with model structural error in soil moisture data assimilation , 2019, Advances in Water Resources.

[420]  Wade T. Crow,et al.  The potential of 2D Kalman filtering for soil moisture data assimilation , 2015 .

[421]  Rene Orth,et al.  Global soil moisture from in-situ measurements using machine learning - SoMo.ml , 2020, ArXiv.

[422]  Mingyan Liu,et al.  Measurement Scheduling for Soil Moisture Sensing: From Physical Models to Optimal Control , 2010, Proceedings of the IEEE.

[423]  Alan Grainger,et al.  Citizen Observatories and the New Earth Observation Science , 2017, Remote. Sens..

[424]  James C. Arnott,et al.  Bioclimatic and Soil Moisture Monitoring Across Elevation in a Mountain Watershed: Opportunities for Research and Resource Management , 2019, Water Resources Research.

[425]  Lazhu,et al.  A MULTISCALE SOIL MOISTURE AND FREEZE-THAW MONITORING NETWORK ON THE THIRD POLE , 2013 .

[426]  M. Sekhar,et al.  Validation and Comparison of LPRM Retrieved Soil Moisture Using AMSR2 Brightness Temperature at Two Spatial Resolutions in the Indian Region , 2017, IEEE Geoscience and Remote Sensing Letters.