Object Recognition Using Multidimensional Receptive Field Histograms

This paper presents a technique to determine the identity of objects in a scene using histograms of the responses of a vector of local linear neighborhood operators (receptive fields). This technique can be used to determine the most probable objects in a scene, independent of the object's position, image-plane orientation and scale. In this paper we describe the mathematical foundations of the technique and present the results of experiments which compare robustness and recognition rates for different local neighborhood operators and histogram similarity measurements.

[1]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[2]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Hans Knutsson,et al.  Preattentive gaze control for robot vision , 1992 .

[4]  Max A. Viergever,et al.  General Intensity Transformations and Second Order Invariants , 1992 .

[5]  Gérard G. Medioni,et al.  Finding Waldo, or focus of attention using local color information , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[6]  John Daugman,et al.  High Confidence Visual Recognition of Persons by a Test of Statistical Independence , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Glenn Healey,et al.  Using illumination invariant descriptors for recognition , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[8]  G. Healey,et al.  Using Illumination Invariant Color Histogram Descriptors for Recognit ion , 1994 .

[9]  Brian V. Funt,et al.  Color Constant Color Indexing , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  B. Schiele,et al.  The Robustness of Object Recognition to Rotation using Multidimensional Receptive Field Histograms , 1996 .

[11]  Bernt Schiele,et al.  The Robustness of Object Recognition to View Point Changes Using Multidimensional Receptive Field Histograms , 1996 .