Adaptation-Induced Compression of Event Time Occurs Only for Translational Motion

Adaptation to fast motion reduces the perceived duration of stimuli displayed at the same location as the adapting stimuli. Here we show that the adaptation-induced compression of time is specific for translational motion. Adaptation to complex motion, either circular or radial, did not affect perceived duration of subsequently viewed stimuli. Adaptation with multiple patches of translating motion caused compression of duration only when the motion of all patches was in the same direction. These results show that adaptation-induced compression of event-time occurs only for uni-directional translational motion, ruling out the possibility that the neural mechanisms of the adaptation occur at early levels of visual processing.

[1]  M. Treisman,et al.  The Internal Clock: Evidence for a Temporal Oscillator Underlying Time Perception with Some Estimates of its Characteristic Frequency , 1990, Perception.

[2]  Scott W. Brown Time, change, and motion: The effects of stimulus movement on temporal perception , 1995, Perception & psychophysics.

[3]  M Concetta Morrone,et al.  Neural mechanisms for timing visual events are spatially selective in real-world coordinates , 2007, Nature Neuroscience.

[4]  Alan Johnston,et al.  Visually-based temporal distortion in dyslexia , 2008, Vision Research.

[5]  A. T. Smith,et al.  Sensitivity to optic flow in human cortical areas MT and MST , 2006, The European journal of neuroscience.

[6]  Roberto Arrighi,et al.  Spatiotopic selectivity of adaptation-based compression of event duration. , 2011, Journal of vision.

[7]  D. Burr,et al.  A cortical area that responds specifically to optic flow, revealed by fMRI , 2000, Nature Neuroscience.

[8]  D. Buonomano,et al.  The neural basis of temporal processing. , 2004, Annual review of neuroscience.

[9]  Ryota Kanai,et al.  Time dilation in dynamic visual display. , 2006, Journal of vision.

[10]  William Curran,et al.  The many directions of time , 2011, Cognition.

[11]  H. Bridge,et al.  Adaptive Pulvinar Circuitry Supports Visual Cognition , 2016, Trends in Cognitive Sciences.

[12]  D. Alais,et al.  Rapid Recalibration to Audiovisual Asynchrony , 2013, The Journal of Neuroscience.

[13]  R. Addams LI. An account of a peculiar optical phænomenon seen after having looked at a moving body , 1834 .

[14]  D. Burr,et al.  Two stages of visual processing for radial and circular motion , 1995, Nature.

[15]  W. Maass,et al.  State-dependent computations: spatiotemporal processing in cortical networks , 2009, Nature Reviews Neuroscience.

[16]  Bahador Bahrami,et al.  Sensory and Association Cortex in Time Perception , 2008, Journal of Cognitive Neuroscience.

[17]  P. Wenderoth,et al.  Retinotopic encoding of the direction aftereffect , 2008, Vision Research.

[18]  Shin'ya Nishida,et al.  Effect of the luminance signal on adaptation-based time compression. , 2011, Journal of vision.

[19]  A. Watson,et al.  Quest: A Bayesian adaptive psychometric method , 1983, Perception & psychophysics.

[20]  Heiner Deubel,et al.  Attention allocation before antisaccades. , 2016, Journal of vision.

[21]  Denis G. Pelli,et al.  ECVP '07 Abstracts , 2007, Perception.

[22]  Edward M. Callaway,et al.  A Disynaptic Relay from Superior Colliculus to Dorsal Stream Visual Cortex in Macaque Monkey , 2010, Neuron.

[23]  Hinze Hogendoorn,et al.  Spatially Localized Time Shifts of the Perceptual Stream , 2010, Front. Psychology.

[24]  Domenica Bueti,et al.  How the Visual Brain Encodes and Keeps Track of Time , 2013, The Journal of Neuroscience.

[25]  C. O. Roelofs,et al.  Influence of different sequences of optical stimuli on the estimation of duration of a given interval of time , 1951 .

[26]  Patrick Cavanagh,et al.  The reference frame of the motion aftereffect is retinotopic. , 2009, Journal of vision.

[27]  J. Y. Goulermas,et al.  Multivoxel fMRI analysis of color tuning in human primary visual cortex. , 2009, Journal of vision.

[28]  David Burr,et al.  Spatiotopic perceptual maps in humans: evidence from motion adaptation , 2012, Proceedings of the Royal Society B: Biological Sciences.

[29]  Inci Ayhan,et al.  Retinotopic adaptation-based visual duration compression. , 2010, Journal of vision.

[30]  Shin'ya Nishida,et al.  The spatial tuning of adaptation-based time compression. , 2009, Journal of vision.

[31]  U. Karmarkar,et al.  Timing in the Absence of Clocks: Encoding Time in Neural Network States , 2007, Neuron.

[32]  Welber Marinovic,et al.  Separable temporal metrics for time perception and anticipatory actions , 2012, Proceedings of the Royal Society B: Biological Sciences.

[33]  Lawrence C. Sincich,et al.  Bypassing V1: a direct geniculate input to area MT , 2004, Nature Neuroscience.

[34]  Derek H. Arnold,et al.  Spatially Localized Distortions of Event Time , 2006, Current Biology.

[35]  Jennifer T. Coull,et al.  Attention and Time , 2010 .

[36]  William Curran,et al.  Direction-contingent duration compression is primarily retinotopic , 2014, Vision Research.

[37]  R. Wurtz,et al.  Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. , 1991, Journal of neurophysiology.

[38]  R. Wurtz,et al.  Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. , 1991, Journal of neurophysiology.

[39]  E Pöppel,et al.  Oscillations as possible basis for time perception. , 1971, Studium generale; Zeitschrift fur die Einheit der Wissenschaften im Zusammenhang ihrer Begriffsbildungen und Forschungsmethoden.

[40]  W. Meck,et al.  Dissecting the Brain's Internal Clock: How Frontal–Striatal Circuitry Keeps Time and Shifts Attention , 2002, Brain and Cognition.