Highly nonlinear functions over finite fields
暂无分享,去创建一个
[1] J. Spencer. Six standard deviations suffice , 1985 .
[2] M. D. Coleman. On the equation b1p - b2P2 = b3 , 1990 .
[3] H. Weyl. Über die Gleichverteilung von Zahlen mod. Eins , 1916 .
[4] Pieter Moree,et al. On primes in arithmetic progression having a prescribed primitive root , 1999, 0707.3062.
[5] Pieter Moree,et al. On primes in arithmetic progression having a prescribed primitive root. II , 2007 .
[6] Tadao Kasami,et al. New generalizations of the Reed-Muller codes-I: Primitive codes , 1968, IEEE Trans. Inf. Theory.
[7] Tor Helleseth,et al. On the covering radius of binary codes (Corresp.) , 1978, IEEE Trans. Inf. Theory.
[8] Kai-Uwe Schmidt,et al. Asymptotically optimal Boolean functions , 2017, J. Comb. Theory, Ser. A.
[9] N. J. A. Sloane. Unsolved Problems Related to the Covering Radius of Codes , 1987 .
[10] Gérard D. Cohen,et al. Covering Codes , 2005, North-Holland mathematical library.
[11] P. Langevin. Calculs de Certaines Sommes de Gauss , 1997 .
[12] J. Dillon. Elementary Hadamard Difference Sets , 1974 .
[13] Jing Yang,et al. Complete solving of explicit evaluation of Gauss sums in the index 2 case , 2009, 0911.5472.
[14] Rudolf Lide,et al. Finite fields , 1983 .
[15] Johannes Mykkeltveit. The covering radius of the (128, 8) Reed-Muller code is 56 (Corresp.) , 1980, IEEE Trans. Inf. Theory.
[16] Elodie Leducq,et al. On the Covering Radius of First-Order Generalized Reed–Muller Codes , 2011, IEEE Transactions on Information Theory.
[17] K. Conrad,et al. Finite Fields , 2018, Series and Products in the Development of Mathematics.
[18] Anand Srivastav,et al. Multicolour Discrepancies , 2003, Comb. Probab. Comput..
[19] Nicholas J. Patterson,et al. The covering radius of the (215, 16) Reed-Muller code is at least 16276 , 1983, IEEE Trans. Inf. Theory.
[20] Selçuk Kavut,et al. 9-variable Boolean functions with nonlinearity 242 in the generalized rotation symmetric class , 2010, Inf. Comput..
[21] E. T.. An Introduction to the Theory of Numbers , 1946, Nature.
[22] J. Beck. Flat Polynomials on the unit Circle—Note on a Problem of Littlewood , 1991 .
[23] E. Wright,et al. An Introduction to the Theory of Numbers , 1939 .