On Nonparametric Predictive Inference and Objective Bayesianism

This paper consists of three main parts. First, we give an introduction to Hill’s assumption A(n) and to theory of interval probability, and an overview of recently developed theory and methods for nonparametric predictive inference (NPI), which is based on A(n) and uses interval probability to quantify uncertainty. Thereafter, we illustrate NPI by introducing a variation to the assumption A(n), suitable for inference based on circular data, with applications to several data sets from the literature. This includes attention to comparison of two groups of circular data, and to grouped data. We briefly discuss such inference for multiple future observations. We end the paper with a discussion of NPI and objective Bayesianism.

[1]  F. Hampel What can the foundations discussion contribute to data analysis? And what may be some of the future directions in robust methods and data analysis? , 1997 .

[2]  Gert de Cooman,et al.  ISIPTA '99, Proceedings of the First International Symposium on Imprecise Probabilities and Their Applications, held at the Conference Center "Het Pand" of the Universiteit Gent, Ghent, Belgium, 29 June - 2 July 1999 , 1999, ISIPTA.

[3]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[4]  Frank P. A. Coolen,et al.  On Bernoulli experiments with imprecise prior probabilities , 1994 .

[5]  Robert Nau,et al.  The Aggregation of Imprecise Probabilities , 2002, ISIPTA.

[6]  P. J. Huber,et al.  Minimax Tests and the Neyman-Pearson Lemma for Capacities , 1973 .

[7]  Grace S. Shieh,et al.  On tests of independence for spherical data-invariance and centering , 2002 .

[8]  S. Rao Jammalamadaka,et al.  Predictive inference for directional data , 1998 .

[9]  Thomas Augustin,et al.  Neyman–Pearson testing under interval probability by globally least favorable pairs: Reviewing Huber–Strassen theory and extending it to general interval probability , 2002 .

[10]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[11]  F P A Coolen,et al.  Condition monitoring: a new perspective , 2000, J. Oper. Res. Soc..

[12]  L. Mark Berliner,et al.  Bayesian Nonparametric Survival Analysis , 1988 .

[13]  G. Choquet Theory of capacities , 1954 .

[14]  Pascal Gautron,et al.  Temporal coherence , 2007, SIGGRAPH Courses.

[15]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[16]  E. Kaplan,et al.  Nonparametric Estimation from Incomplete Observations , 1958 .

[17]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[18]  Michael Goldstein,et al.  Prior Inferences for Posterior Judgements , 1997 .

[19]  B. Heller Circular Statistics in Biology, Edward Batschelet. Academic Press, London & New York (1981), 371, Price $69.50 , 1983 .

[20]  Frank P. A. Coolen,et al.  Nonparametric Predictive Comparison of Two Groups of Lifetime Data , 2003, ISIPTA.

[21]  Na Nino Mushkudiani,et al.  Small nonparametric tolerance regions for directional data , 2000 .

[22]  Thomas Augustin,et al.  Nonparametric predictive inference and interval probability , 2004 .

[23]  David Wooff,et al.  Bayes linear computation: concepts, implementation and programs , 1995 .

[24]  Fpa Frank Coolen,et al.  Imprecise predictive selection based on low structure assumptions , 2001 .

[25]  Eric R. Ziecel Aspects of Uncertainty , 1995 .

[26]  F. Coolen,et al.  Nonparametric predictive inference with right-censored data , 2004 .

[27]  Kurt Weichselberger Axiomatic foundations of the theory of interval-probability , 1995 .

[28]  M. Goldstein The Prevision of a Prevision , 1983 .

[29]  Kurt Weichselberger The theory of interval-probability as a unifying concept for uncertainty , 2000, Int. J. Approx. Reason..

[30]  Pauline Coolen-Schrijner,et al.  A nonparametric predictive method for queues , 2003, Eur. J. Oper. Res..

[31]  L. Wasserman,et al.  Inferences from multinomial data: Learning about a bag of marbles - Discussion , 1996 .

[32]  M. Goldstein Bayes Linear Analysis , 2006 .

[33]  Pauline Coolen-Schrijner,et al.  Adaptive age replacement strategies based on nonparametric predictive inference , 2004, J. Oper. Res. Soc..

[34]  G. Boole An Investigation of the Laws of Thought: On which are founded the mathematical theories of logic and probabilities , 2007 .

[35]  Frank P. A. Coolen,et al.  Nonparametric predictive inference for grouped lifetime data , 2003, Reliab. Eng. Syst. Saf..

[36]  T. Fine,et al.  Towards a Frequentist Theory of Upper and Lower Probability , 1982 .

[37]  Frank P. A. Coolen,et al.  Learning from multinomial data: a nonparametric predictive alternative to the Imprecise Dirichlet Model , 2005, ISIPTA.

[38]  Fábio Gagliardi Cozman,et al.  Reasoning with imprecise probabilities , 2000, Int. J. Approx. Reason..

[39]  K. Mardia Statistics of Directional Data , 1972 .

[40]  I. Meilijson,et al.  New Tools to Better Model Behavior Under Risk and UNcertainty: An Oevrview , 1997 .

[41]  B. M. Hill,et al.  Theory of Probability , 1990 .

[42]  Seymour Geisser,et al.  8. Predictive Inference: An Introduction , 1995 .

[43]  J. Kacprzyk,et al.  Advances in the Dempster-Shafer theory of evidence , 1994 .

[44]  Jon Williamson Philosophies of Probability : Objective Bayesianism and its Challenges , 2004 .

[45]  F. P. A. Coolen,et al.  Elementare Grundbegriffe einer Allgemeineren Wahrscheinlichkeitsrechnung, vol. I, Intervallwahrscheinlichkeit als Umfassendes Konzept , 2003 .

[46]  Michael Goldstein,et al.  Exchangeable Belief Structures , 1986 .

[47]  T. Bayes An essay towards solving a problem in the doctrine of chances , 2003 .

[48]  David Ríos Insua,et al.  Robust Bayesian analysis , 2000 .

[49]  Nicholas I. Fisher,et al.  Statistical Analysis of Circular Data , 1993 .

[50]  B. M. Hill,et al.  Posterior Distribution of Percentiles: Bayes' Theorem for Sampling From a Population , 1968 .

[51]  P. van der Laan,et al.  Nonparametric Predictive Inference in Statistical Process Control , 2004 .

[52]  P. Walley Inferences from Multinomial Data: Learning About a Bag of Marbles , 1996 .

[53]  Bruce M. Hill,et al.  Parametric Models for AN: Splitting Processes and Mixtures , 1993 .

[54]  M. Lawera Predictive inference : an introduction , 1995 .

[55]  J. Berger Robust Bayesian analysis : sensitivity to the prior , 1990 .

[56]  Gert de Cooman,et al.  ISIPTA '01, Proceedings of the Second International Symposium on Imprecise Probabilities and Their Applications, Ithaca, NY, USA , 2001, ISIPTA.

[57]  Terrence L. Fine,et al.  Unstable Collectives and Envelopes of Probability Measures , 1991 .

[58]  Frank P. A. Coolen,et al.  Comparing two populations based on low stochastic structure assumptions , 1996 .

[59]  F. Coolen Low structure imprecise predictive inference for Bayes' problem , 1998 .

[60]  Kurt Weichselberger Elementare Grundbegriffe einer allgemeineren Wahrscheinlichkeitsrechnung I , 2001 .

[61]  Didier Dubois,et al.  Focusing versus updating in belief function theory , 1994 .

[62]  A. Dempster On Direct Probabilities , 1963 .