Gadolinium(III)-based blood-pool contrast agents for magnetic resonance imaging: status and clinical potential

Blood-pool MRI contrast agents have enormous potential to aid sensitive magnetic resonance detection and yield definitive diagnostic data of cancer and diseases of the cardiovascular system. Many attempts have been initiated to design macromolecular gadolinium (Gd[III]) complexes as magnetic resonance imaging blood-pool contrast agents, as macromolecules do not readily diffuse across healthy vascular endothelium, and remain intravascular. Although extremely efficacious in detecting and characterizing pathologic tissue, clinical development of these agents has been limited by potential toxicity concerns from incomplete Gd(III) clearance. Recent innovative technologies, such as reversible protein-binding contrast agents and biodegradable macromolecular contrast agents, may be valuable alternatives that combine the effective imaging characteristics of an intravascular contrast agent and the safety of clinically approved low-molecular-weight Gd(III) chelates.

[1]  P. Cullis,et al.  Liposomal Gd-DTPA: effect of encapsulation on enhancement of hepatoma model by MRI. , 1989, Magnetic resonance imaging.

[2]  P. Turski,et al.  Magnetic resonance imaging of rabbit brain after intracarotid injection of large multivesicular liposomes containing paramagnetic metals and DTPA , 1988, Magnetic resonance in medicine.

[3]  Steven J Wang,et al.  Characteristics of a New MRI Contrast Agent Prepared From Polypropyleneimine Dendrimers, Generation 2 , 2003, Investigative radiology.

[4]  K. Hubner,et al.  Gd-labeled liposomes containing amphipathic agents for magnetic resonance imaging. , 1990, Investigative radiology.

[5]  R Weissleder,et al.  A new macromolecule as a contrast agent for MR angiography: preparation, properties, and animal studies. , 1993, Radiology.

[6]  M. Brechbiel,et al.  Rapid accumulation and internalization of radiolabeled herceptin in an inflammatory breast cancer xenograft with vasculogenic mimicry predicted by the contrast-enhanced dynamic MRI with the macromolecular contrast agent G6-(1B4M-Gd)(256). , 2002, Cancer research.

[7]  D M Shames,et al.  Assessment of a rapid clearance blood pool MR contrast medium (P792) for assays of microvascular characteristics in experimental breast tumors with correlations to histopathology , 2001, Magnetic resonance in medicine.

[8]  P. Anelli,et al.  Preclinical profile and clinical potential of gadocoletic acid trisodium salt (B22956/1), a new intravascular contrast medium for MRI. , 2002, Academic radiology.

[9]  M. Brechbiel,et al.  Micro‐MR angiography of normal and intratumoral vessels in mice using dedicated intravascular MR contrast agents with high generation of polyamidoamine dendrimer core: Reference to pharmacokinetic properties of dendrimer‐based MR contrast agents , 2001, Journal of magnetic resonance imaging : JMRI.

[10]  E. Unger,et al.  Liposomes as MR contrast agents: Pros and cons , 1991, Magnetic resonance in medicine.

[11]  S. F. Quinn,et al.  Aortoiliac occlusive disease in patients with known or suspected peripheral vascular disease: safety and efficacy of gadofosveset-enhanced MR angiography--multicenter comparative phase III study. , 2005, Radiology.

[12]  R. Clarkson Blood-Pool MRI Contrast Agents: Properties and Characterization , 2002 .

[13]  L. Helm,et al.  Gadolinium‐based linear polymer with temperature‐independent proton relaxivities: a unique interplay between the water exchange and rotational contributions , 1998 .

[14]  M. Brechbiel,et al.  Dynamic micro-magnetic resonance imaging of liver micrometastasis in mice with a novel liver macromolecular magnetic resonance contrast agent DAB-Am64-(1B4M-Gd)(64). , 2001, Cancer research.

[15]  L. Huang,et al.  Gadolinium-labeled liposomes containing amphiphilic Gd-DTPA derivatives of varying chain length: targeted MRI contrast enhancement agents for the liver. , 1991, Magnetic resonance imaging.

[16]  W. A. Murphy,et al.  Magnetic resonance imaging using gadolinium labeled monoclonal antibody. , 1985, Investigative radiology.

[17]  D Revel,et al.  Kinetic characterization of CMD‐A2‐Gd‐DOTA as an intravascular contrast agent for myocardial perfusion measurement with MRI , 2000, Magnetic resonance in medicine.

[18]  M. Schaefer,et al.  Paramagnetic dextrans as magnetic resonance blood pool tracers. , 1994, Investigative radiology.

[19]  H. Weinmann,et al.  In vivo and in vitro evaluation of Gd-DTPA-polylysine as a macromolecular contrast agent for magnetic resonance imaging. , 1991, Investigative radiology.

[20]  M. Schabel,et al.  Pharmacokinetics and Tissue Retention of (Gd-DTPA)-Cystamine Copolymers, a Biodegradable Macromolecular Magnetic Resonance Imaging Contrast Agent , 2005, Pharmaceutical Research.

[21]  T L Chenevert,et al.  Magnetic resonance angiography with gadomer-17. An animal study original investigation. , 1998, Investigative radiology.

[22]  E M Haacke,et al.  Intravascular contrast agent improves magnetic resonance angiography of carotid arteries in minipigs , 1997, Journal of magnetic resonance imaging : JMRI.

[23]  J Lautrou,et al.  Physicochemical and biological evaluation of P792, a rapid-clearance blood-pool agent for magnetic resonance imaging. , 2001, Investigative radiology.

[24]  J. Bulte,et al.  Pharmacokinetics of a high-generation dendrimer-Gd-DOTA. , 2002, Academic radiology.

[25]  M. Brechbiel,et al.  3D MR angiography of intratumoral vasculature using a novel macromolecular MR contrast agent , 2001, Magnetic resonance in medicine.

[26]  R. Müller,et al.  Dendrimers in Diagnostics , 2000 .

[27]  K. Nicolay,et al.  A liposomal system for contrast-enhanced magnetic resonance imaging of molecular targets. , 2004, Bioconjugate chemistry.

[28]  T. Desser,et al.  Interstitial MR and CT lymphography with Gd-DTPA-co-α, ω-diaminoPEG(1450) and Gd-DTPA-co-1,6-diaminohexane polymers: Preliminary experience , 1999 .

[29]  G. Frija,et al.  Capillary leakage of a macromolecular MRI agent, carboxymethyldextran-Gd-DTPA, in the liver: pharmacokinetics and imaging implications. , 1996, Magnetic resonance imaging.

[30]  M. Moseley,et al.  Magnetic Resonance Imaging Detection of an Experimental Pulmonary Perfusion Deficit Using a Macromolecular Contrast Agent: Polylysine–Gadolinium-DTPA40 , 1992, Investigative radiology.

[31]  A de Roos,et al.  Equilibrium phase MR angiography of the aortic arch and abdominal vasculature with the blood pool contrast agent CMD‐A2‐Gd‐DOTA in pigs , 1999, Journal of magnetic resonance imaging : JMRI.

[32]  A de Roos,et al.  Blood pool contrast agents for cardiovascular MR imaging , 1999, Journal of magnetic resonance imaging : JMRI.

[33]  Peter Caravan,et al.  The interaction of MS-325 with human serum albumin and its effect on proton relaxation rates. , 2002, Journal of the American Chemical Society.

[34]  R. Dolan,et al.  MS-325: albumin-targeted contrast agent for MR angiography. , 1998, Radiology.

[35]  A. Mohs,et al.  Polydisulfide Gd(III) chelates as biodegradable macromolecular magnetic resonance imaging contrast agents , 2006, International journal of nanomedicine.

[36]  P S Tofts,et al.  Measurement of blood‐brain barrier permeability using dynamic Gd‐DTPA scanning—a comparison of methods , 1992, Magnetic resonance in medicine.

[37]  G. Adam,et al.  Gd‐DTPA‐cascade‐polymer: Potential blood pool contrast agent for MR imaging , 1994, Journal of magnetic resonance imaging : JMRI.

[38]  D. Parker,et al.  PEG-g-poly(GdDTPA-co-L-cystine): effect of PEG chain length on in vivo contrast enhancement in MRI. , 2005, Biomacromolecules.

[39]  R. Felix,et al.  Hemodynamic tolerance of intravascular contrast agents for magnetic resonance imaging. , 1997, Investigative radiology.

[40]  Wolfgang Ebert,et al.  Pharmacokinetics of Gadomer-17, a new dendritic magnetic resonance contrast agent , 2001, Magnetic Resonance Materials in Physics, Biology and Medicine.

[41]  K. Scheffler,et al.  B22956/1, a new intravascular contrast agent for MRI: first administration to humans--preliminary results. , 2002, Academic radiology.

[42]  T K Foo,et al.  Contrast-Enhanced Magnetic Resonance Angiography: Technical Considerations for Optimized Clinical Implementation , 2001, Topics in magnetic resonance imaging : TMRI.

[43]  M. Moseley,et al.  Differentiation of capillary leak and hydrostatic pulmonary edema with a macromolecular MR imaging contrast agent. , 1991, Radiology.

[44]  David A. Cheresh,et al.  Detection of tumor angiogenesis in vivo by αvβ3-targeted magnetic resonance imaging , 1998, Nature Medicine.

[45]  H. Maeda,et al.  Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[46]  P. M. Henrichs,et al.  High relaxivity linear Gd(DTPA)‐polymer conjugates: The role of hydrophobic interactions , 1997, Magnetic resonance in medicine.

[47]  Hisataka Kobayashi,et al.  Activated clearance of a biotinylated macromolecular MRI contrast agent from the blood pool using an avidin chase. , 2003, Bioconjugate chemistry.

[48]  M. Botta,et al.  Novel paramagnetic macromolecular complexes derived from the linkage of a macrocyclic Gd(III) complex to polyamino acids through a squaric acid moiety. , 1999, Bioconjugate chemistry.

[49]  R. Brasch,et al.  Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. , 1984, AJR. American journal of roentgenology.

[50]  Michael V Knopp,et al.  Comparison of dendrimer‐based macromolecular contrast agents for dynamic micro‐magnetic resonance lymphangiography , 2003, Magnetic resonance in medicine.

[51]  P. Tofts,et al.  Measurement of the blood‐brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts , 1991, Magnetic resonance in medicine.

[52]  R. Lauffer,et al.  Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. , 1999, Chemical reviews.

[53]  E. Unger,et al.  Detailed toxicity studies of liposomal gadolinium-DTPA. , 1991, Investigative radiology.

[54]  E. R. Birnbaum,et al.  Lanthanide ions activate alpha-amylase. , 1973, Biochemistry.

[55]  J. Lansman Blockade of current through single calcium channels by trivalent lanthanide cations. Effect of ionic radius on the rates of ion entry and exit , 1990, The Journal of general physiology.

[56]  P. Joseph,et al.  Nuclear magnetic resonance and gamma camera tumor imaging using gadolinium-labeled monoclonal antibodies. , 1986, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[57]  W. Cacheris,et al.  The relationship between thermodynamics and the toxicity of gadolinium complexes. , 1990, Magnetic resonance imaging.

[58]  J. Hagan,et al.  Comparative Chemical Structure and Pharmacokinetics of MRI Contrast Agents , 1988, Investigative radiology.

[59]  David R Vera,et al.  Gadolinium-DTPA-dextran: a macromolecular MR blood pool contrast agent. , 2004, Academic radiology.

[60]  N. van Bruggen,et al.  Assessing tumor angiogenesis using macromolecular MR imaging contrast media , 1997, Journal of magnetic resonance imaging : JMRI.

[61]  Shihua Zhao,et al.  Carboxymethyl-dextran-gadolinium-DTPA as a blood-pool contrast agent for magnetic resonance angiography. Experimental study in rabbits. , 1996, Investigative radiology.

[62]  M. Wendland,et al.  Macromolecular contrast media-enhanced MRI estimates of microvascular permeability correlate with histopathologic tumor grade. , 1998, Academic radiology.

[63]  K Togashi,et al.  Positive effects of polyethylene glycol conjugation to generation‐4 polyamidoamine dendrimers as macromolecular MR contrast agents , 2001, Magnetic resonance in medicine.

[64]  D M Shames,et al.  Comparison of Gadomer-17 and gadopentetate dimeglumine for differentiation of benign from malignant breast tumors with MR imaging. , 2000, Academic radiology.

[65]  A. Sherry,et al.  Stability constants for Gd3+ binding to model DTPA‐conjugates and DTPA‐proteins: Implications for their use as magnetic resonance contrast agents , 1988, Magnetic resonance in medicine.

[66]  C. Yuan,et al.  Time‐of‐flight MR angiography with Gd‐DTPA hexamethylene diamine co‐polymer blood pool contrast agent: Comparison of enhanced MRA and conventional angiography for arterial stenosis induced in rabbits , 2000, Journal of magnetic resonance imaging : JMRI.

[67]  R. Muller,et al.  Polylysine-Gd-DTPAn and polylysine-Gd-DOTAn coupled to anti-CEA F(ab')2 fragments as potential immunocontrast agents. Relaxometry, biodistribution, and magnetic resonance imaging in nude mice grafted with human colorectal carcinoma. , 1998, Investigative radiology.

[68]  P. Anelli,et al.  Gadocoletic Acid Trisodium Salt (B22956/1): A New Blood Pool Magnetic Resonance Contrast Agent With Application in Coronary Angiography , 2006, Investigative radiology.

[69]  G. Frija,et al.  Measurement of liver blood volume using a macromolecular MRI contrast agent at equilibrium. , 1997, Magnetic resonance imaging.

[70]  E. Rofstad,et al.  Transvascular and interstitial transport of a 19 kDa linear molecule in human melanoma xenografts measured by contrast‐enhanced magnetic resonance imaging , 2001, Journal of magnetic resonance imaging : JMRI.

[71]  Z. Lu,et al.  Water soluble polymers in tumor targeted delivery. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[72]  M. Brechbiel,et al.  Pharmacokinetics and enhancement patterns of macromolecular MR contrast agents with various sizes of polyamidoamine dendrimer cores , 2001, Magnetic resonance in medicine.

[73]  Michel Schneider,et al.  Gadolinium-containing mixed micelle formulations: a new class of blood pool MRI/MRA contrast agents. , 2002, Academic radiology.

[74]  C. Higgins,et al.  Myocardial infarction: assessment with an intravascular MR contrast medium. Work in progress. , 1991, Radiology.

[75]  W. Ebert,et al.  The Demonstration of Human Tumors on Nude Mice Using Gadolinium‐Labelled Monoclonal Antibodies for Magnetic Resonance Imaging , 1993, Investigative radiology.

[76]  R. Dolan,et al.  MS-325: a small-molecule vascular imaging agent for magnetic resonance imaging. , 1996, Academic radiology.

[77]  T. Helbich,et al.  MRI assessment of microvascular characteristics in experimental breast tumors using a new blood pool contrast agent (MS‐325) with correlations to histopathology , 2001, Journal of magnetic resonance imaging : JMRI.

[78]  O. Nalcioglu,et al.  Measurement of tumor vascular volume and mean microvascular random flow velocity magnitude by dynamic GD‐DTPA‐Albumin enhanced and diffusion‐weighted MRI , 1998, Magnetic resonance in medicine.

[79]  Akira Hiraga,et al.  Novel liver macromolecular MR contrast agent with a polypropylenimine diaminobutyl dendrimer core: Comparison to the vascular MR contrast agent with the polyamidoamine dendrimer core , 2001, Magnetic resonance in medicine.

[80]  M. Brechbiel,et al.  Biodistribution and metabolism of targeted and nontargeted protein-chelate-gadolinium complexes: evidence for gadolinium dissociation in vitro and in vivo. , 1995, Magnetic resonance imaging.

[81]  F. Vögtle,et al.  Dendrimers: From Design to Application-A Progress Report. , 1999, Angewandte Chemie.

[82]  M. Ogan,et al.  Albumin labeled with Gd-DTPA: an intravascular contrast-enhancing agent for magnetic resonance blood pool imaging: preparation and characterization. , 1987, Investigative radiology.

[83]  Yi Wang,et al.  Contrast-enhanced magnetic resonance angiography with biodegradable (Gd-DTPA)-cystamine copolymers: comparison with MS-325 in a swine model. , 2006, Molecular pharmaceutics.

[84]  V. Fuster,et al.  MRI to detect atherosclerosis with gadolinium‐containing immunomicelles targeting the macrophage scavenger receptor , 2006, Magnetic resonance in medicine.

[85]  Young Hwan Kim,et al.  Occlusive and reperfused myocardial infarction: detection by using MR imaging with gadolinium polylysine enhancement. , 1993, Radiology.

[86]  D M Shames,et al.  Correlation of dynamic contrast-enhanced MR imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media. , 1998, AJR. American journal of roentgenology.

[87]  É. Tóth,et al.  The impact of rigidity and water exchange on the relaxivity of a dendritic MRI contrast agent. , 2002, Chemistry.

[88]  A. D. Watson,et al.  Preparation and characterization of paramagnetic polychelates and their protein conjugates. , 1990, Bioconjugate chemistry.

[89]  R. Brasch,et al.  Quantification of capillary permeability to macromolecular magnetic resonance imaging contrast media in experimental mammary adenocarcinomas. , 1994, Investigative radiology.

[90]  T. Trouard,et al.  Gadolinium-containing copolymeric chelates—a new potential MR contrast agent , 1999, Magnetic Resonance Materials in Physics, Biology and Medicine.

[91]  J. Davies,et al.  Non-Gadolinium-Based MRI Contrast Agents , 2002 .

[92]  E. Unger,et al.  Biodistribution and clearance of liposomal gadolinium-DTPA. , 1990, Investigative radiology.

[93]  Sheng-Kwei Song,et al.  High‐resolution MRI characterization of human thrombus using a novel fibrin‐targeted paramagnetic nanoparticle contrast agent , 2000, Magnetic resonance in medicine.

[94]  S. Reingold,et al.  The role of magnetic resonance techniques in understanding and managing multiple sclerosis. , 1998, Brain : a journal of neurology.

[95]  R J van der Geest,et al.  Blood pool contrast agent CMD‐A2‐Gd‐DOTA‐enhanced MR imaging of infarcted myocardium in pigs , 1999, Journal of magnetic resonance imaging : JMRI.

[96]  Hisataka Kobayashi,et al.  Nano-sized MRI contrast agents with dendrimer cores. , 2005, Advanced drug delivery reviews.

[97]  P C Lauterbur,et al.  Dendrimer‐based metal chelates: A new class of magnetic resonance imaging contrast agents , 1994, Magnetic resonance in medicine.

[98]  Xiaoping Hu,et al.  Long‐circulating liposomal contrast agents for magnetic resonance imaging , 2006, Magnetic resonance in medicine.

[99]  E. Uzgiris,et al.  Tumor imaging with a macromolecular paramagnetic contrast agent: gadopentetate dimeglumine-polylysine. , 1995, Academic radiology.

[100]  Joop A. Peters,et al.  Inulin as a carrier for contrast agents in magnetic resonance imaging. , 2001, Chemistry.

[101]  Isabelle Raynal,et al.  Physical, chemical, and biological evaluations of P760: A new gadolinium complex characterized by a low rate of interstitial diffusion , 2000, Journal of magnetic resonance imaging : JMRI.

[102]  U Schmiedl,et al.  Albumin labeled with Gd-DTPA as an intravascular, blood pool-enhancing agent for MR imaging: biodistribution and imaging studies. , 1987, Radiology.

[103]  É. Tóth,et al.  From monomers to micelles: investigation of the parameters influencing proton relaxivity , 2002, JBIC Journal of Biological Inorganic Chemistry.

[104]  T. Desser,et al.  Dynamics of tumor imaging with Gd‐DTPA—polyethylene glycol polymers: Dependence on molecular weight , 1994, Journal of magnetic resonance imaging : JMRI.

[105]  R. Lauffer,et al.  Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design , 1987 .

[106]  É. Tóth,et al.  Rotational dynamics account for pH-dependent relaxivities of PAMAM dendrimeric, Gd-based potential MRI contrast agents. , 2005, Chemistry.

[107]  R. Brasch,et al.  AUR Memorial Award 1991. Immunogenicity of gadolinium-based contrast agents for magnetic resonance imaging. Induction and characterization of antibodies in animals. , 1991, Investigative radiology.

[108]  D. Bakan,et al.  Biodistribution of GdCl3 and Gd-DTPA and their influence on proton magnetic relaxation in rat tissues. , 1987, Magnetic resonance imaging.

[109]  D C Peters,et al.  Steady-state and dynamic MR angiography with MS-325: initial experience in humans. , 1998, Radiology.

[110]  G. D’Errico,et al.  Physicochemical properties of mixed micellar aggregates containing CCK peptides and Gd complexes designed as tumor specific contrast agents in MRI. , 2004, Journal of the American Chemical Society.

[111]  P. Cullis,et al.  Liposomal Gd-DTPA: preparation and characterization of relaxivity. , 1989, Radiology.

[112]  D. Parker,et al.  Contrast‐enhanced MRI with new biodegradable macromolecular Gd(III) complexes in tumor‐bearing mice , 2005, Magnetic resonance in medicine.

[113]  Michal Neeman,et al.  Characterizing extravascular fluid transport of macromolecules in the tumor interstitium by magnetic resonance imaging. , 2005, Cancer research.

[114]  Hisataka Kobayashi,et al.  Lymphatic drainage imaging of breast cancer in mice by micro-magnetic resonance lymphangiography using a nano-size paramagnetic contrast agent. , 2004, Journal of the National Cancer Institute.

[115]  B. Biagi,et al.  Gadolinium blocks low- and high-threshold calcium currents in pituitary cells. , 1990, The American journal of physiology.

[116]  R. Brasch,et al.  Effect of varying the molecular weight of the MR contrast agent Gd‐DTPA‐polylysine on blood pharmacokinetics and enhancement patterns , 1994, Journal of magnetic resonance imaging : JMRI.

[117]  M. Brechbiel,et al.  Comparison of the macromolecular MR contrast agents with ethylenediamine-core versus ammonia-core generation-6 polyamidoamine dendrimer. , 2001, Bioconjugate chemistry.

[118]  G. Choppin,et al.  Thermodynamic stability and kinetic inertness of MS-325, a new blood pool agent for magnetic resonance imaging. , 2001, Inorganic chemistry.

[119]  D. Parker,et al.  Pharmacokinetics, Biodistribution and Contrast Enhanced MR Blood Pool Imaging of Gd-DTPA Cystine Copolymers and Gd-DTPA Cystine Diethyl Ester Copolymers in a Rat Model , 2006, Pharmaceutical Research.

[120]  M. Brechbiel,et al.  Novel intravascular macromolecular MRI contrast agent with generation‐4 polyamidoamine dendrimer core: Accelerated renal excretion with coinjection of lysine , 2001, Magnetic resonance in medicine.

[121]  D. Parker,et al.  PEG-g-poly(GdDTPA-co-L-cystine): a biodegradable macromolecular blood pool contrast agent for MR imaging. , 2004, Bioconjugate chemistry.

[122]  Zahi A Fayad,et al.  Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI , 2007, Proceedings of the National Academy of Sciences.

[123]  K. Hubner,et al.  Gadolinium‐labeled liposomes containing paramagnetic amphipathic agents: Targeted MRI contrast agents for the liver , 1988, Magnetic resonance in medicine.

[124]  T. Helbich,et al.  A new polysaccharide macromolecular contrast agent for MR imaging: Biodistribution and imaging characteristics , 2000, Journal of magnetic resonance imaging : JMRI.

[125]  D. Parker,et al.  Extracellular biodegradable macromolecular gadolinium(III) complexes for MRI , 2004, Magnetic resonance in medicine.

[126]  S A Wickline,et al.  Magnetic resonance contrast enhancement of neovasculature with alpha(v)beta(3)-targeted nanoparticles. , 2000, Magnetic resonance in medicine.

[127]  V M Runge,et al.  The use of Gd DTPA as a perfusion agent and marker of blood-brain barrier disruption. , 1985, Magnetic resonance imaging.

[128]  H. Paajanen,et al.  Proton relaxation enhancement of albumin, immunoglobulin g, and fibrinogen labeled with gd‐dtpa , 1990, Magnetic resonance in medicine.

[129]  W. Gibby,et al.  Cross-linked DTPA polysaccharides for magnetic resonance imaging. Synthesis and relaxation properties. , 1989, Investigative radiology.

[130]  P. Turski,et al.  Glioblastoma multiforme: MR imaging at 1.5 and 9.4 T after injection of polylysine-DTPA-Gd in rats. , 1990, AJNR. American journal of neuroradiology.

[131]  H. Bosmans,et al.  MR angiography with gadopentetate dimeglumine-polylysine: evaluation in rabbits. , 1990, AJR. American journal of roentgenology.

[132]  Klaas Nicolay,et al.  MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[133]  M. Hynes,et al.  Gadolinium(III) di- and tetrachelates designed for in vivo noncovalent complexation with plasma proteins: a novel molecular design for blood pool MRI contrast enhancing agents. , 1995, Bioconjugate chemistry.

[134]  Hisataka Kobayashi,et al.  Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between sizes and cores. , 2003, Bioconjugate chemistry.

[135]  Joop A. Peters,et al.  A gadolinium(III) complex of a carboxylic-phosphorus acid derivative of diethylenetriamine covalently bound to inulin, a potential macromolecular MRI contrast agent. , 2004, Bioconjugate chemistry.

[136]  E. Unger,et al.  Paramagnetic liposomes as magnetic resonance contrast agents. , 1990, Investigative radiology.