Tight Frame Characterization of Multiwavelet Vector Functions in Terms of the polyphase Matrix

The extension principles play an important role in characterizing and constructing of wavelet frames. The common extension principles, the unitary extension principle (UEP) or the oblique extension principle (OEP), are based on the unitarity of the modulation matrix. In this paper, we state the UEP and OEP for refinable function vectors in the polyphase representation. Finally, we apply our results to directional wavelets on triangles which we have constructed in a previous work. We will show that the wavelet system generates a tight frame for L2(ℝ2).

[1]  Martin Vetterli,et al.  Oversampled filter banks , 1998, IEEE Trans. Signal Process..

[2]  Gershon Elber,et al.  Multiresolution Analysis , 2022 .

[3]  A. Ron,et al.  Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .

[4]  A. Ron,et al.  Affine systems inL2 (ℝd) II: Dual systems , 1997 .

[5]  Truong Q. Nguyen,et al.  Wavelets and filter banks , 1996 .

[6]  Helmut Bölcskei,et al.  Frame-theoretic analysis of oversampled filter banks , 1998, IEEE Trans. Signal Process..

[7]  Wang-Q Lim,et al.  Wavelets with composite dilations and their MRA properties , 2006 .

[8]  P. Vaidyanathan Multirate Systems And Filter Banks , 1992 .

[9]  I. Daubechies,et al.  Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .

[10]  B. Han Construction of Wavelets and Framelets by the Projection Method , 2007 .

[11]  Fritz Keinert,et al.  Wavelets and Multiwavelets , 2003 .

[12]  C. Heil,et al.  Self-similarity and Multiwavelets in Higher Dimensions , 2004 .

[13]  Edward Wilson,et al.  Some simple Haar-type wavelets in higher dimensions , 2007 .

[14]  Gerlind Plonka,et al.  Directional Haar Wavelet Frames on Triangles , 2009 .

[15]  Bin Han,et al.  Multiwavelet Frames from Refinable Function Vectors , 2003, Adv. Comput. Math..

[16]  Zuowei Shen Affine systems in L 2 ( IR d ) : the analysis of the analysis operator , 1995 .

[17]  Karlheinz Gröchenig,et al.  Multiresolution analysis, Haar bases, and self-similar tilings of Rn , 1992, IEEE Trans. Inf. Theory.

[18]  Qingtang Jiang Multivariate matrix refinable functions with arbitrary matrix dilation , 1999 .

[19]  Wang-Q Lim,et al.  Wavelets with composite dilations , 2004 .

[20]  C. Chui,et al.  Compactly supported tight and sibling frames with maximum vanishing moments , 2001 .