An adaptive three-term conjugate gradient method based on self-scaling memoryless BFGS matrix
暂无分享,去创建一个
[1] Reza Ghanbari,et al. Two optimal Dai–Liao conjugate gradient methods , 2015 .
[2] Hiroshi Yabe,et al. Global Convergence Properties of Nonlinear Conjugate Gradient Methods with Modified Secant Condition , 2004, Comput. Optim. Appl..
[3] D. Shanno. On the Convergence of a New Conjugate Gradient Algorithm , 1978 .
[4] Reza Ghanbari,et al. The Dai-Liao nonlinear conjugate gradient method with optimal parameter choices , 2014, Eur. J. Oper. Res..
[5] Boris Polyak. Some methods of speeding up the convergence of iteration methods , 1964 .
[6] Neculai Andrei,et al. A simple three-term conjugate gradient algorithm for unconstrained optimization , 2013, J. Comput. Appl. Math..
[7] Neculai Andrei. A new three-term conjugate gradient algorithm for unconstrained optimization , 2014, Numerical Algorithms.
[8] M. Fukushima,et al. A modified BFGS method and its global convergence in nonconvex minimization , 2001 .
[9] Emmanuel J. Candès,et al. Adaptive Restart for Accelerated Gradient Schemes , 2012, Foundations of Computational Mathematics.
[10] Ya-Xiang Yuan,et al. A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property , 1999, SIAM J. Optim..
[11] P. Wolfe. Convergence Conditions for Ascent Methods. II , 1969 .
[12] Jorge Nocedal,et al. Global Convergence Properties of Conjugate Gradient Methods for Optimization , 1992, SIAM J. Optim..
[13] P. Wolfe. Convergence Conditions for Ascent Methods. II: Some Corrections , 1971 .
[14] Jianzhon Zhang,et al. Properties and numerical performance of quasi-Newton methods with modified quasi-Newton equations , 2001 .
[15] Yu-Hong Dai,et al. A Nonlinear Conjugate Gradient Algorithm with an Optimal Property and an Improved Wolfe Line Search , 2013, SIAM J. Optim..
[16] Masoud Fatemi. An Optimal Parameter for Dai–Liao Family of Conjugate Gradient Methods , 2016, J. Optim. Theory Appl..
[17] E. Polak,et al. Note sur la convergence de méthodes de directions conjuguées , 1969 .
[18] Clóvis C. Gonzaga,et al. Fine tuning Nesterov’s steepest descent algorithm for differentiable convex programming , 2012, Mathematical Programming.
[19] C. Kou,et al. An improved nonlinear conjugate gradient method with an optimal property , 2014 .
[20] D. Goldfarb. A family of variable-metric methods derived by variational means , 1970 .
[21] L. Liao,et al. New Conjugacy Conditions and Related Nonlinear Conjugate Gradient Methods , 2001 .
[22] Li Zhang,et al. A nonlinear conjugate gradient method based on the MBFGS secant condition , 2006, Optim. Methods Softw..
[23] Yurii Nesterov,et al. Subgradient methods for huge-scale optimization problems , 2013, Mathematical Programming.
[24] Guoyin Li,et al. New quasi-Newton methods for unconstrained optimization problems , 2006, Appl. Math. Comput..
[25] R. Fletcher,et al. A New Approach to Variable Metric Algorithms , 1970, Comput. J..
[26] Avinoam Perry,et al. Technical Note - A Modified Conjugate Gradient Algorithm , 1978, Oper. Res..
[27] Neculai Andrei,et al. On three-term conjugate gradient algorithms for unconstrained optimization , 2013, Appl. Math. Comput..
[28] Boris Polyak. The conjugate gradient method in extremal problems , 1969 .
[29] William W. Hager,et al. A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search , 2005, SIAM J. Optim..
[30] Guoyin Li,et al. New conjugacy condition and related new conjugate gradient methods for unconstrained optimization , 2007 .
[31] Neculai Andrei,et al. Accelerated adaptive Perry conjugate gradient algorithms based on the self-scaling memoryless BFGS update , 2017, J. Comput. Appl. Math..
[32] D. Shanno. Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .
[33] Neculai Andrei,et al. An Unconstrained Optimization Test Functions Collection , 2008 .
[34] C. G. Broyden. The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .
[35] Jorge J. Moré,et al. Benchmarking optimization software with performance profiles , 2001, Math. Program..
[36] Reza Ghanbari,et al. A descent family of Dai–Liao conjugate gradient methods , 2014, Optim. Methods Softw..
[37] C. M. Reeves,et al. Function minimization by conjugate gradients , 1964, Comput. J..