Decentralized state estimation for a large-scale spatially interconnected system.

A decentralized state estimator is derived for the spatially interconnected systems composed of many subsystems with arbitrary connection relations. An optimization problem on the basis of linear matrix inequality (LMI) is constructed for the computations of improved subsystem parameter matrices. Several computationally effective approaches are derived which efficiently utilize the block-diagonal characteristic of system parameter matrices and the sparseness of subsystem connection matrix. Moreover, this decentralized state estimator is proved to converge to a stable system and obtain a bounded covariance matrix of estimation errors under certain conditions. Numerical simulations show that the obtained decentralized state estimator is attractive in the synthesis of a large-scale networked system.

[1]  David W. Miller,et al.  Decentralized State Estimation for Flexible Space Structures , 2000 .

[2]  Georgios B. Giannakis,et al.  Distributed Robust Power System State Estimation , 2012, IEEE Transactions on Power Systems.

[3]  Paul Pinsler Über das Vorkommen definiter und semidefiniter Formen in Scharen quadratischer Formen , 1936 .

[4]  Haisheng Yu,et al.  A New Perspective to Graphical Characterization of Multiagent Controllability , 2017, IEEE Transactions on Cybernetics.

[5]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[6]  Nathan van de Wouw,et al.  Decentralized observer-based control via networked communication , 2013, Autom..

[7]  Milos S. Stankovic,et al.  Consensus Based Overlapping Decentralized Estimator , 2009, IEEE Transactions on Automatic Control.

[8]  Marcello Farina,et al.  Moving-horizon partition-based state estimation of large-scale systems , 2024, Autom..

[9]  Tamás Terlaky,et al.  A Survey of the S-Lemma , 2007, SIAM Rev..

[10]  Sumit Roy,et al.  Decentralized structures for parallel Kalman filtering , 1988 .

[11]  Geir E. Dullerud,et al.  Distributed control design for spatially interconnected systems , 2003, IEEE Trans. Autom. Control..

[12]  Bikash C. Pal,et al.  Decentralized Dynamic State Estimation in Power Systems Using Unscented Transformation , 2014, IEEE Transactions on Power Systems.

[13]  Anders Rantzer,et al.  Robust Stability Analysis of Sparsely Interconnected Uncertain Systems , 2013, IEEE Transactions on Automatic Control.

[14]  Chao Yang,et al.  Schedule Communication for Decentralized State Estimation , 2013, IEEE Transactions on Signal Processing.

[15]  Hesam Ahmadian Behrooz,et al.  Distributed and decentralized state estimation in gas networks as distributed parameter systems. , 2015, ISA transactions.

[16]  Arthur G. O. Mutambara,et al.  Decentralized Estimation and Control for Multisensor Systems , 2019 .

[17]  Tong Zhou Coordinated One-Step Optimal Distributed State Prediction for a Networked Dynamical System , 2013, IEEE Transactions on Automatic Control.

[18]  E. Caro,et al.  Decentralized State Estimation and Bad Measurement Identification: An Efficient Lagrangian Relaxation Approach , 2011, IEEE Transactions on Power Systems.

[19]  Fernando Paganini,et al.  Distributed control of spatially invariant systems , 2002, IEEE Trans. Autom. Control..

[20]  Mehrdad Saif,et al.  Decentralized state estimation in large-scale interconnected dynamical systems , 1992, Autom..

[21]  Milos S. Stankovic,et al.  Consensus based overlapping decentralized estimation with missing observations and communication faults , 2009, Autom..

[22]  Petros A. Ioannou,et al.  Vehicle Following Control Design for Automated Highway Systems [25 Years Ago] , 1996, IEEE Control Systems.

[23]  T. Zhou,et al.  Distributed state observer design for networked dynamic systems , 2016 .

[24]  Jan Komenda,et al.  Control of Distributed Systems: Tutorial and Overview , 2011, Eur. J. Control.