A new heuristic algorithm to solve Circle Packing problem inspired by nanoscale electromagnetic fields and gravitational effects

In this paper, we present a new algorithm for the fast and efficient solution of the Packing problem in two dimensions. The packing problem consists in finding the best arrangement of objects (many geometrical forms) in a specific space called container.This new algorithm is inspired by the observations of nanometric scale electromagnetic fields. We use the electromagnetic theory of the electric field to calculate the best position to place a circular object in a configuration of other circular objects previously packing. Also, in this new algorithm we simulate two processes called "gravity" and "shaken" that compact the distribution of the objects placed in the container and allow to minimize the unoccupied space.

[1]  Mhand Hifi,et al.  Packing circles in the smallest circle: an adaptive hybrid algorithm , 2011, J. Oper. Res. Soc..

[2]  Ronald L. Graham,et al.  Improving Dense Packings of Equal Disks in a Square , 2000, Electron. J. Comb..

[3]  Rosenbaum,et al.  Quantum annealing of a disordered magnet , 1999, Science.

[4]  Sergey V. Gaponenko,et al.  Introduction to Nanophotonics: Introduction , 2010 .

[5]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[6]  Bernardetta Addis,et al.  Disk Packing in a Square: A New Global Optimization Approach , 2008, INFORMS J. Comput..

[7]  Steven S. Seiden,et al.  On the online bin packing problem , 2001, JACM.

[8]  Kenneth Stephenson,et al.  A circle packing algorithm , 2003, Comput. Geom..

[9]  Shamil I. Galiev,et al.  Linear models for the approximate solution of the problem of packing equal circles into a given domain , 2013, Eur. J. Oper. Res..

[10]  I. Katayama,et al.  Nanoscale electron manipulation in metals with intense THz electric fields , 2018 .

[11]  Michael Sampels,et al.  A MAX-MIN Ant System for the University Course Timetabling Problem , 2002, Ant Algorithms.

[12]  E. Wegert,et al.  On Beurling's boundary value problem in circle packing , 2012 .

[13]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[14]  Abdolreza Hatamlou,et al.  Black hole: A new heuristic optimization approach for data clustering , 2013, Inf. Sci..

[15]  Felix Martinez-Rios,et al.  A new hybridized algorithm based on Population-Based Simulated Annealing with an experimental study of phase transition in 3-SAT , 2017, ICCSCI.

[16]  Emile H. L. Aarts,et al.  Simulated annealing and Boltzmann machines - a stochastic approach to combinatorial optimization and neural computing , 1990, Wiley-Interscience series in discrete mathematics and optimization.

[17]  János D. Pintér,et al.  Solving circle packing problems by global optimization: Numerical results and industrial applications , 2008, Eur. J. Oper. Res..

[18]  Mohammad Reza Meybodi,et al.  Brownian Motion Optimization : an Algorithm for Optimization ( GBMO ) , 2012 .

[19]  C. Ropers,et al.  Nanoscale Mapping of Ultrafast Magnetization Dynamics with Femtosecond Lorentz Microscopy , 2017, Physical Review X.

[20]  Hamed Shah-Hosseini,et al.  The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm , 2009, Int. J. Bio Inspired Comput..

[21]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[22]  Introduction to nanophotonics , 2016 .

[23]  Gao-Wei Yan,et al.  A Novel Optimization Algorithm Based on Atmosphere Clouds Model , 2013, Int. J. Comput. Intell. Appl..

[24]  Pandian Vasant,et al.  Monkey Algorithm for Packing Circles with Binary Variables , 2018, ICO.

[25]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[26]  Marco Locatelli,et al.  Packing equal circles in a square: a deterministic global optimization approach , 2002, Discret. Appl. Math..