Concept lattice reduction using fuzzy K-Means clustering

During the design of concept lattices, complexity plays a major role in computing all the concepts from the huge incidence matrix. Hence for reducing the size of the lattice, methods based on matrix decompositions like SVD are available in the literature. However, SVD computation is known to have large time and memory requirements. In this paper, we propose a new method based on Fuzzy K-Means clustering for reducing the size of the concept lattices. We demonstrate the implementation of proposed method on two application areas: information retrieval and information visualization.

[1]  Douglas R. Vogel,et al.  Complexity Reduction in Lattice-Based Information Retrieval , 2005, Information Retrieval.

[2]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[3]  Denys Poshyvanyk,et al.  Combining Formal Concept Analysis with Information Retrieval for Concept Location in Source Code , 2007, 15th IEEE International Conference on Program Comprehension (ICPC '07).

[4]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[5]  Václav Snásel,et al.  On Concept Lattices and Implication Bases from Reduced Contexts , 2008, ICCS Supplement.

[6]  Jasminka Dobša,et al.  Comparison of Information Retrieval Techniques: Latent Semantic Indexing and Concept Indexing , 2004 .

[7]  Rokia Missaoui,et al.  Experimental Comparison of Navigation in a Galois Lattice with Conventional Information Retrieval Methods , 1993, Int. J. Man Mach. Stud..

[8]  Uta Priss Formal concept analysis in information science , 2006 .

[9]  Sándor Dominich The Modern Algebra of Information Retrieval , 2008, The Information Retrieval Series.

[10]  Yves Bastide,et al.  Intelligent Structuring and Reducing of Association Rules with Formal Concept Analysis , 2001, KI/ÖGAI.

[11]  C. Kumar,et al.  Latent Semantic Indexing using eigenvalue analysis for efficient information retrieval , 2006 .

[12]  Rohana K. Rajapakse,et al.  Text retrieval with more realistic concept matching and reinforcement learning , 2006, Inf. Process. Manag..

[13]  Jihoon Kim,et al.  Concept lattices for visualizing and generating user profiles for context-aware service recommendations , 2009, Expert Syst. Appl..

[14]  Bernard De Baets,et al.  Inducing decision trees via concept lattices , 2009, CLA.

[15]  Gerd Stumme,et al.  Formal Concept Analysis: foundations and applications , 2005 .

[16]  Claudio Carpineto,et al.  Using Concept Lattices for Text Retrieval and Mining , 2005, Formal Concept Analysis.

[17]  Christian Döring,et al.  Data analysis with fuzzy clustering methods , 2006, Comput. Stat. Data Anal..

[18]  V. Snasel,et al.  Behavior of the Concept Lattice Reduction to visualizing data after Using Matrix Decompositions , 2007, 2007 Innovations in Information Technologies (IIT).

[19]  Uta Priss,et al.  Lattice-based information retrieval , 2000 .

[20]  Alan H. Fielding,et al.  Cluster and Classification Techniques for the Biosciences , 2006 .

[21]  Gerd Stumme,et al.  Efficient Data Mining Based on Formal Concept Analysis , 2002, DEXA.

[22]  Ming-Wen Shao,et al.  Reduction method for concept lattices based on rough set theory and its application , 2007, Comput. Math. Appl..

[23]  G. D. Oosthuizen,et al.  Knowledge discovery in databases using lattices , 1997 .

[24]  Michael W. Berry,et al.  Understanding search engines: mathematical modeling and text retrieval (software , 1999 .

[25]  Ling Wei,et al.  Attribute Reduction in Consistent Decision Formal Context , 2008 .

[26]  Inderjit S. Dhillon,et al.  Concept Decompositions for Large Sparse Text Data Using Clustering , 2004, Machine Learning.

[27]  Sushant Sachdeva,et al.  Dimension Reduction , 2008, Encyclopedia of GIS.