Markov Games under a Geometric Drift Condition
暂无分享,去创建一个
[1] Heinz-Uwe Küenle,et al. Stochastische Spiele und Entscheidungsmodelle , 1986 .
[2] William D. Sudderth,et al. Finitely additive and measurable stochastic games , 1993 .
[3] A. Maitra,et al. Borel Stochastic Games with Lim Sup Payoff , 1993 .
[4] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.
[5] Andrzej S. Nowak. Zero-Sum Average Payoff Stochastic Games with General State Space , 1994 .
[6] T. Başar,et al. Advances in Dynamic Games and Applications , 1994 .
[7] William D. Sudderth,et al. Finitely additive stochastic games with Borel measurable payoffs , 1998, Int. J. Game Theory.
[8] Heinz-Uwe Küenle,et al. Equilibrium Strategies in Stochastic Games with additive Cost and Transition Structure , 1999, IGTR.
[9] Andrzej S. Nowak,et al. Optimal strategies in a class of zero-sum ergodic stochastic games , 1999, Math. Methods Oper. Res..
[10] O. Hernández-Lerma,et al. Further topics on discrete-time Markov control processes , 1999 .
[11] Heinz-Uwe Küenle. Stochastic Games with Complete Information and Average Cost Criteria , 2000 .
[12] Onésimo Hernández-Lerma,et al. Zero-Sum Stochastic Games in Borel Spaces: Average Payoff Criteria , 2000, SIAM J. Control. Optim..
[13] Anna Jaskiewicz,et al. On the optimality equation for zero-sum ergodic stochastic games , 2001, Math. Methods Oper. Res..
[14] Heinz-Uwe Küenle. On Multichain Markov Games , 2001 .
[15] Heinz-Uwe Küenle,et al. The optimality equation and ε-optimal strategies in Markov games with average reward criterion , 2003, Math. Methods Oper. Res..