Modulation of metal-insulator transitions by field-controlled strain in NdNiO3/SrTiO3/PMN-PT (001) heterostructures

The band width control through external stress has been demonstrated as a useful knob to modulate metal-insulator transition (MIT) in RNiO3 as a prototype correlated materials. In particular, lattice mismatch strain using different substrates have been widely utilized to investigate the effect of strain on transition temperature so far but the results were inconsistent in the previous literatures. Here, we demonstrate dynamic modulation of MIT based on electric field-controlled pure strain in high-quality NdNiO3 (NNO) thin films utilizing converse-piezoelectric effect of (001)-cut - (PMN-PT) single crystal substrates. Despite the difficulty in the NNO growth on rough PMN-PT substrates, the structural quality of NNO thin films has been significantly improved by inserting SrTiO3 (STO) buffer layers. Interestingly, the MIT temperature in NNO is downward shifted by ~3.3 K in response of 0.25% in-plane compressive strain, which indicates less effective TMI modulation of field-induced strain than substrate-induced strain. This study provides not only scientific insights on band-width control of correlated materials using pure strain but also potentials for energy-efficient electronic devices.

[1]  G. Martyna,et al.  High Response Piezoelectric and Piezoresistive Materials for Fast, Low Voltage Switching: Simulation and Theory of Transduction Physics at the Nanometer‐Scale , 2012, Advanced materials.

[2]  L. Chen,et al.  Reversible in situ modulation of competing phases in manganite/ferroelectrics heterostructures , 2011 .

[3]  Jing Wang,et al.  Non-volatile ferroelastic switching of the Verwey transition and resistivity of epitaxial Fe3O4/PMN-PT (011) , 2013, Scientific Reports.

[4]  Influence of strain on the magnetization and magnetoelectric effect inLa0.7A0.3MnO3∕PMN−PT(001)(A=Sr,Ca) , 2006, cond-mat/0609760.

[5]  Masashi Kawasaki,et al.  Tuning of the metal-insulator transition in electrolyte-gated NdNiO3 thin films , 2010 .

[6]  C. Ahn,et al.  Correlated Oxide Physics and Electronics , 2014 .

[7]  Siddharth Rajan,et al.  A heterojunction modulation-doped Mott transistor , 2011, 1109.5299.

[8]  James M. Rondinelli,et al.  Control of octahedral connectivity in perovskite oxide heterostructures: An emerging route to multifunctional materials discovery , 2012 .

[9]  Shimpei Ono,et al.  Electric‐Field Control of the Metal‐Insulator Transition in Ultrathin NdNiO3 Films , 2010, Advanced materials.

[10]  D. H. Wang,et al.  Electric field manipulation of magnetic and transport properties in SrRuO3/Pb(Mg1/3Nb2/3)O3-PbTiO3 heterostructure , 2014, Scientific Reports.

[11]  A. Kaul,et al.  Oxygen nonstoichiometry of NdNiO3−δ and SmNiO3−δ , 2004 .

[12]  J. Narayan,et al.  Strain-induced tuning of metal–insulator transition in NdNiO3 , 2002 .

[13]  R. Greene,et al.  Electronic conduction in : the dependence on the oxygen stoichiometry , 1998 .

[14]  Zuhuang Chen,et al.  Effects of nonequilibrium growth, nonstoichiometry, and film orientation on the metal-to-insulator transition in NdNiO₃ thin films. , 2014, ACS applied materials & interfaces.

[15]  J. Bokor,et al.  Large resistivity modulation in mixed-phase metallic systems , 2015, Nature Communications.

[16]  S. Stemmer,et al.  The electrochemical impact on electrostatic modulation of the metal-insulator transition in nickelates , 2015 .

[17]  L. Schultz,et al.  SrTiO3 on piezoelectric PMN-PT(001) for application of variable strain , 2008 .

[18]  J. Kreisel,et al.  Effect of tensile and compressive strains on the transport properties of SmNiO3 layers epitaxially grown on (001) SrTiO3 and LaAlO3 substrates , 2007 .

[19]  S. Ramanathan,et al.  Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions , 2011 .

[20]  Nazzal,et al.  Systematic study of insulator-metal transitions in perovskites RNiO3 (R=Pr,Nd,Sm,Eu) due to closing of charge-transfer gap. , 1992, Physical review. B, Condensed matter.

[21]  V. Jonauskas,et al.  Elastic properties of rhombohedral, cubic, and monoclinic phases of LaNiO3 by first principles calculations , 2015 .

[22]  Lingfei Wang,et al.  Anisotropic-strain-controlled metal-insulator transition in epitaxial NdNiO3 films grown on orthorhombic NdGaO3 substrates , 2013 .

[23]  J. Tsao,et al.  Materials Fundamentals of Molecular Beam Epitaxy , 1992 .

[24]  Structural phase transformation and phase boundary∕stability studies of field-cooled Pb(Mg1∕3Nb2∕3O3)–32%PbTiO3 crystals , 2004, cond-mat/0410740.

[25]  Wei Ren,et al.  Voltage Control of Metal-insulator Transition and Non-volatile Ferroelastic Switching of Resistance in VOx/PMN-PT Heterostructures , 2014, Scientific Reports.

[26]  S. Ha,et al.  Stable metal–insulator transition in epitaxial SmNiO3 thin films , 2012 .

[27]  Leon Balents,et al.  Low-dimensional Mott material: transport in ultrathin epitaxial LaNiO3 films , 2010 .

[28]  S. Stemmer,et al.  Correlation between stoichiometry, strain, and metal-insulator transitions of NdNiO3 films , 2015 .

[29]  T. Grande,et al.  Strain-controlled oxygen vacancy formation and ordering in CaMnO3 , 2013, 1303.4749.

[30]  Haiqing Xu,et al.  Compositional Homogeneity and Electrical Properties of Lead Magnesium Niobate Titanate Single Crystals Grown by a Modified Bridgman Technique , 2000 .

[31]  S. Parkin,et al.  Suppression of Metal-Insulator Transition in VO2 by Electric Field–Induced Oxygen Vacancy Formation , 2013, Science.

[32]  Haoran Xu,et al.  Electric-field-modulated nonvolatile resistance switching in VO₂/PMN-PT(111) heterostructures. , 2014, ACS applied materials & interfaces.

[33]  M. Rozenberg,et al.  Taming the Mott Transition for a Novel Mott Transistor , 2008 .

[34]  P. Paufler,et al.  Voltage-controlled epitaxial strain in La0.7Sr0.3MnO3∕Pb(Mg1∕3Nb2∕3)O3-PbTiO3(001) films , 2005 .

[35]  Arun V. Thathachary,et al.  A steep-slope transistor based on abrupt electronic phase transition , 2015, Nature Communications.

[36]  Rupp,et al.  Extraordinary pressure dependence of the metal-to-insulator transition in the charge-transfer compounds NdNiO3 and PrNiO3. , 1993, Physical review. B, Condensed matter.

[37]  E. Specht,et al.  Phase diagram of compressively strained nickelate thin films , 2013 .

[38]  P. Xiang,et al.  Strain controlled metal-insulator transition in epitaxial NdNiO3 thin films , 2013 .

[39]  B. Dabrowski,et al.  Strain-mediated metal-insulator transition in epitaxial ultrathin films of NdNiO3 , 2010, 1003.3073.

[40]  Min Gyu Kim,et al.  In-plane strain control of the magnetic remanence and cation-charge redistribution in CoFe 2 O 4 thin film grown on a piezoelectric substrate , 2010 .

[41]  J. Goodenough,et al.  Pressure-induced non-Fermi-liquid behavior of PrNiO3. , 2005, Physical review letters.