Interdependent Preferences and Strategic Distinguishability

A universal type space of interdependent expected utility preference types is constructed from higher-order preference hierarchies describing (i) an agent’s (unconditional) preferences over a lottery space; (ii) the agent’s preference over Anscombe-Aumann acts conditional on the unconditional preferences; and so on. Two types are said to be strategically indistinguishable if they have an equilibrium action in common in any mechanism that they play. We show that two types are strategically indistinguishable if and only if they have the same preference hierarchy. We examine how this result extends to alternative solution concepts and strategic relations between types.

[1]  長田 潤一,et al.  Modern general topology , 1974 .

[2]  Yves Sprumont,et al.  On the Testable Implications of Collective Choice Theories , 2000, J. Econ. Theory.

[3]  Yi-Chun Chen,et al.  The Strategic Impact of Higher-Order Beliefs , 2012 .

[4]  D. Bergemann,et al.  Robust Implementation in Direct Mechanisms , 2009 .

[5]  S. Morris,et al.  Games in Preference Form and Preference Rationalizability , 2012 .

[6]  Larry G. Epstein Preference, Rationalizability and Equilibrium , 1997 .

[7]  Aviad Heifetz,et al.  Universal Interactive Preferences , 2015, TARK.

[8]  Pierpaolo Battigalli,et al.  Dynamic Psychological Games , 2005, J. Econ. Theory.

[9]  Qingmin Liu,et al.  On redundant types and Bayesian formulation of incomplete information , 2009, J. Econ. Theory.

[10]  D. Bergemann,et al.  Robust Mechanism Design , 2003 .

[11]  Ziv Hellman A game with no Bayesian approximate equilibria , 2014, J. Econ. Theory.

[12]  R. Simon Games of incomplete information, ergodic theory, and the measurability of equilibria , 2003 .

[13]  Christopher P. Chambers Proper scoring rules for general decision models , 2008, Games Econ. Behav..

[14]  Thomas R. Palfrey,et al.  Mechanism Design with Incomplete Information: A Solution to the Implementation Problem , 1989, Journal of Political Economy.

[15]  Antonio Penta,et al.  Robust Dynamic Mechanism Design , 2011 .

[16]  Christopher P. Chambers,et al.  Dynamically eliciting unobservable information , 2014, EC.

[17]  Tilman B oumi rgers PURE STRATEGY DOMINANCE , 1993 .

[18]  Brian Hill,et al.  An additively separable representation in the Savage framework , 2010, J. Econ. Theory.

[19]  Harry J. Paarsch,et al.  An Introduction to the Structural Econometrics of Auction Data , 2006 .

[20]  Larry G. Epstein,et al.  "Beliefs about Beliefs" without Probabilities , 1996 .

[21]  J. Geanakoplos,et al.  Psychological games and sequential rationality , 1989 .

[22]  Faruk Gul,et al.  The Canonical Space for Behavioral Types , 2007 .

[23]  J. Mertens,et al.  The Value of Information in Zero-Sum Games , 2001 .

[24]  Philip A. Haile,et al.  On the Empirical Content of Quantal Response Equilibrium , 2003 .

[25]  F. J. Anscombe,et al.  A Definition of Subjective Probability , 1963 .

[26]  Pierpaolo Battigalli,et al.  Rationalization and Incomplete Information , 2003 .

[27]  Xiao Luo,et al.  An indistinguishability result on rationalizability under general preferences , 2012 .

[28]  J. Schreiber Foundations Of Statistics , 2016 .

[29]  Tomasz Sadzik,et al.  Beliefs Revealed in Bayesian-Nash Equilibrium , 2008 .

[30]  Arunava Sen,et al.  VIRTUAL IMPLEMENTATION IN NASH EQUILIBRIUM , 1991 .

[31]  Kim C. Border,et al.  Infinite Dimensional Analysis: A Hitchhiker’s Guide , 1994 .

[32]  Martin Meier,et al.  The context of the game , 2009, TARK '09.

[33]  Marciano M. Siniscalchi,et al.  Hierarchies of Conditional Beliefs and Interactive Epistemology in Dynamic Games , 1999 .

[34]  D. Bergemann,et al.  Interdependent Preferences and Strategic Distinguishability , 2016 .

[35]  Benjamin Naumann,et al.  Classical Descriptive Set Theory , 2016 .

[36]  A. Heifetz,et al.  Topology-Free Typology of Beliefs , 1998 .

[37]  S. Morris,et al.  Common Certainty of Rationality Revisited , 2011 .

[38]  S. Zamir,et al.  Formulation of Bayesian analysis for games with incomplete information , 1985 .

[39]  Stephen Morris,et al.  Topologies on Types , 2005 .

[40]  Faruk Gul,et al.  Interdependent preference models as a theory of intentions , 2016, J. Econ. Theory.

[41]  John Duggan Virtual Bayesian Implementation , 1997 .

[42]  Roberto Serrano,et al.  Multiplicity of Mixed Equilibria in Mechanisms: A Unified Approach to Exact and Approximate Implementation , 2009 .

[43]  Christoph Müller,et al.  Robust virtual implementation under common strong belief in rationality , 2016, J. Econ. Theory.

[44]  Aviad Heifetz,et al.  On the Generic (Im)possibility of Full Surplus Extraction in Mechanism Design , 2006 .

[45]  D. Levine Modeling Altruism and Spitefulness in Experiments , 1998 .

[46]  Alfredo Di Tillio,et al.  Subjective Expected Utility in Games , 2009 .

[47]  Muhamet Yildiz,et al.  Invariance to representation of information , 2015, Games Econ. Behav..

[48]  R. Tourky,et al.  Title: Savage Games a Theory of Strategic Interaction with Purely Subjective Uncertainty 2011 Rsmg Working Paper Series a Theory of Strategic Interaction with Purely Subjective Uncertainty , 2011 .

[49]  Paul Milgrom,et al.  Putting Auction Theory to Work , 2004 .

[50]  D. Bergemann,et al.  Robust Virtual Implementation , 2009 .

[51]  D. Fudenberg,et al.  Interim Correlated Rationalizability , 2007 .

[52]  Eddie Dekel,et al.  Hierarchies of Beliefs and Common Knowledge , 1993 .

[53]  Roger B. Myerson,et al.  Game theory - Analysis of Conflict , 1991 .

[54]  Philip J. Reny,et al.  An Ex-Post E¢cient Auction¤ , 1999 .

[55]  Hitoshi Matsushima,et al.  Virtual implementation in iteratively undominated strategies: complete information , 1992 .

[56]  Jeffrey C. Ely,et al.  Hierarchies of Belief and Interim Rationalizability , 2004 .

[57]  Fang-Kuo Sun,et al.  Value of information in zero-sum games , 1976 .

[58]  S. Afriat THE CONSTRUCTION OF UTILITY FUNCTIONS FROM EXPENDITURE DATA , 1967 .

[59]  Pierpaolo Battigalli,et al.  Interactive Epistemology and Solution Concepts for Games with Asymmetric Information , 2008 .

[60]  John O. Ledyard,et al.  The scope of the hypothesis of Bayesian equilibrium , 1986 .

[62]  Finite signed measures on function spaces , 1981 .