Low-Mach number treatment for Finite-Volume schemes on unstructured meshes

The paper presents a low-Mach number (LM) treatment technique for high-order, Finite-Volume (FV) schemes for the Euler and the compressible Navier–Stokes equations. We concentrate our efforts on the implementation of the LM treatment for the unstructured mesh framework, both in two and three spatial dimensions, and highlight the key differences compared with the method for structured grids. The main scope of the LM technique is to at least maintain the accuracy of low speed regions without introducing artefacts and hampering the global solution and stability of the numerical scheme. Two families of spatial schemes are considered within the k-exact FV framework: the Monotonic Upstream-Centered Scheme for Conservation Laws (MUSCL) and the Weighted Essentially Non-Oscillatory (WENO). The simulations are advanced in time with an explicit third-order Strong Stability Preserving (SSP) Runge–Kutta method. Several flow problems are considered for inviscid and turbulent flows where the obtained solutions are compared with referenced data. The associated benefits of the method are analysed in terms of overall accuracy, dissipation characteristics, order of scheme, spatial resolution and grid composition.

[1]  Vladimir A. Titarev,et al.  WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions , 2011, J. Comput. Phys..

[2]  Dimitris Drikakis,et al.  WENO schemes on arbitrary unstructured meshes for laminar, transitional and turbulent flows , 2014, J. Comput. Phys..

[3]  Alexander V. Rodionov,et al.  Artificial viscosity in Godunov-type schemes to cure the carbuncle phenomenon , 2017, J. Comput. Phys..

[4]  Miguel R. Visbal,et al.  Comparative study of implicit and subgrid‐scale model large‐eddy simulation techniques for low‐Reynolds number airfoil applications , 2013 .

[5]  Dimitris Drikakis,et al.  A high-order finite-volume method for atmospheric flows on unstructured grids , 2016 .

[6]  Claus-Dieter Munz,et al.  A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes , 2007, J. Comput. Phys..

[7]  Zhiliang Xu,et al.  Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells , 2009, J. Comput. Phys..

[8]  C. Ollivier-Gooch Quasi-ENO Schemes for Unstructured Meshes Based on Unlimited Data-Dependent Least-Squares Reconstruction , 1997 .

[9]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[10]  Dimitris Drikakis,et al.  WENO schemes for mixed-elementunstructured meshes , 2010 .

[11]  Yang Liu,et al.  Accuracy improvement of axisymmetric bubble dynamics using low Mach number scaling , 2014 .

[12]  Fermín Navarrina,et al.  A new shock-capturing technique based on Moving Least Squares for higher-order numerical schemes on unstructured grids , 2010 .

[13]  Panagiotis Tsoutsanis,et al.  Assessment of high-order finite volume methods on unstructured meshes for RANS solutions of aeronautical configurations , 2017 .

[14]  S. Orszag,et al.  Small-scale structure of the Taylor–Green vortex , 1983, Journal of Fluid Mechanics.

[15]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[16]  Georg Bader,et al.  The influence of cell geometry on the accuracy of upwind schemes in the low mach number regime , 2009, J. Comput. Phys..

[17]  Zhi J. Wang,et al.  Spectral (finite) volume method for conservation laws on unstructured grids IV: extension to two-dimensional systems , 2004 .

[18]  Philipp Birken,et al.  L2Roe: a low dissipation version of Roe's approximate Riemann solver for low Mach numbers , 2016 .

[19]  Zhi J. Wang,et al.  Implicit Large Eddy Simulation of Transitional Flow over a SD7003 Wing Using High-order Spectral Difference Method , 2010 .

[20]  Ralf Hartmann,et al.  A discontinuous Galerkin method for inviscid low Mach number flows , 2009, J. Comput. Phys..

[21]  Antonis F. Antoniadis,et al.  Numerical Accuracy in RANS Computations of High-Lift Multi-element Airfoil and Aicraft Configurations , 2015 .

[22]  Felix Rieper,et al.  On the dissipation mechanism of upwind-schemes in the low Mach number regime: A comparison between Roe and HLL , 2010, J. Comput. Phys..

[23]  H. Tufo,et al.  Development of a Scalable Global Discontinuous Galerkin Atmospheric Model , 2005 .

[24]  Rémi Abgrall,et al.  On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation , 1994 .

[25]  Gecheng Zha,et al.  Low diffusion E-CUSP scheme with implicit high order WENO scheme for preconditioned Navier-Stokes equations , 2010 .

[26]  W. A. Li,et al.  Quadrature‐Free Non‐Oscillation Finite Volume Scheme for Solving Navier‐Stokes Equations on Unstructured grids , 2011 .

[27]  Panagiotis Tsoutsanis,et al.  Extended bounds limiter for high-order finite-volume schemes on unstructured meshes , 2018, J. Comput. Phys..

[28]  Z. Wang,et al.  Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids , 2002 .

[29]  Hiroaki Nishikawa Robust and accurate viscous discretization via upwind scheme – I: Basic principle , 2011 .

[30]  D. Stanescu,et al.  Essentially Nonoscillatory Euler Solutions on Unstructured Meshes Using Extrapolation , 1998 .

[31]  Ben Thornber,et al.  Accuracy of high‐order density‐based compressible methods in low Mach vortical flows , 2014 .

[32]  João Luiz F. Azevedo,et al.  High‐order ENO and WENO schemes for unstructured grids , 2007 .

[33]  M. de la Llave Plata,et al.  Development of a multiscale LES model in the context of a modal discontinuous Galerkin method , 2016 .

[34]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[35]  Donghyun You,et al.  A conservative finite volume method for incompressible Navier-Stokes equations on locally refined nested Cartesian grids , 2016, J. Comput. Phys..

[36]  João Luiz F. Azevedo,et al.  Improved High-Order Spectral Finite Volume Method Implementation for Aerodynamic Flows , 2009 .

[37]  Brian C. Vermeire,et al.  On the properties of energy stable flux reconstruction schemes for implicit large eddy simulation , 2016, J. Comput. Phys..

[38]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[39]  Sigal Gottlieb,et al.  On High Order Strong Stability Preserving Runge–Kutta and Multi Step Time Discretizations , 2005, J. Sci. Comput..

[40]  O. Friedrich,et al.  Weighted Essentially Non-Oscillatory Schemes for the Interpolation of Mean Values on Unstructured Grids , 1998 .

[41]  Panagiotis Tsoutsanis,et al.  High-Order Methods for Hypersonic Shock Wave Turbulent Boundary Layer Interaction Flow , 2015 .

[42]  Claus-Dieter Munz,et al.  High‐order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations , 2014 .

[43]  Andreas Haselbacher,et al.  A WENO Reconstruction Algorithim for Unstructured Grids Based on Explicit Stencil Construction , 2005 .

[44]  R. J. R. Williams,et al.  An improved reconstruction method for compressible flows with low Mach number features , 2008, J. Comput. Phys..

[45]  Clinton P. T. Groth,et al.  High-order solution-adaptive central essentially non-oscillatory (CENO) method for viscous flows , 2011, J. Comput. Phys..

[46]  Per-Olof Persson,et al.  Implicit Large Eddy Simulation of transition to turbulence at low Reynolds numbers using a Discontinuous Galerkin method , 2011 .

[47]  Sofiane Khelladi,et al.  A high-order density-based finite volume method for the computation of all-speed flows , 2016 .

[48]  Dimitris Drikakis,et al.  Implicit Large Eddy Simulation of weakly-compressible turbulent channel flow , 2015 .

[49]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[50]  Freddie D. Witherden,et al.  On the utility of GPU accelerated high-order methods for unsteady flow simulations: A comparison with industry-standard tools , 2017, J. Comput. Phys..

[51]  Panagiotis Tsoutsanis,et al.  Azure: an advanced CFD software suite based on high-resolution and high-order methods , 2015 .

[52]  Felix Rieper,et al.  A low-Mach number fix for Roe's approximate Riemann solver , 2011, J. Comput. Phys..

[53]  Jonathan R. Bull,et al.  Simulation of the Taylor–Green Vortex Using High-Order Flux Reconstruction Schemes , 2015 .

[54]  Michael Dumbser,et al.  A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes , 2008, J. Comput. Phys..

[55]  Carl Ollivier-Gooch,et al.  Accuracy analysis of unstructured finite volume discretization schemes for diffusive fluxes , 2014 .

[56]  Christer Fureby,et al.  Simulation of transition and turbulence decay in the Taylor–Green vortex , 2007 .

[57]  Chao Yan,et al.  A new Roe-type scheme for all speeds , 2015 .

[58]  Michael Dumbser,et al.  High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: Viscous heat-conducting fluids and elastic solids , 2015, J. Comput. Phys..

[59]  Leland Jameson,et al.  Numerical Convergence Study of Nearly Incompressible, Inviscid Taylor–Green Vortex Flow , 2005, J. Sci. Comput..

[60]  V. Guinot Approximate Riemann Solvers , 2010 .

[61]  Michael Dumbser,et al.  Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems , 2007, J. Comput. Phys..

[62]  E. Toro,et al.  Restoration of the contact surface in the HLL-Riemann solver , 1994 .

[63]  D. Drikakis,et al.  Comparison of structured- and unstructured-grid, compressible and incompressible methods using the vortex pairing problem , 2015 .

[64]  Timothy J. Barth,et al.  The design and application of upwind schemes on unstructured meshes , 1989 .

[65]  Shingo Matsuyama,et al.  Performance of all-speed AUSM-family schemes for DNS of low Mach number turbulent channel flow , 2014 .

[66]  Chi-Wang Shu,et al.  A technique of treating negative weights in WENO schemes , 2000 .

[67]  Zhi J. Wang,et al.  Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids. Basic Formulation , 2002 .

[68]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[69]  Zhiliang Xu,et al.  Hierarchical reconstruction for spectral volume method on unstructured grids , 2009, J. Comput. Phys..

[70]  Yufei Zhang,et al.  A low dissipation numerical scheme for Implicit Large Eddy Simulation , 2015 .

[71]  Michael Dumbser,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..

[72]  Panagiotis Tsoutsanis,et al.  Improvement of the computational performance of a parallel unstructured WENO finite volume CFD code for Implicit Large Eddy Simulation , 2018, Computers & Fluids.

[73]  Xue-song Li,et al.  Mechanism of Roe-type schemes for all-speed flows and its application , 2013 .

[74]  C. Ollivier-Gooch,et al.  A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation , 2002 .