WEAK ω-CATEGORIES FROM INTENSIONAL TYPE THEORY

We show that for any type in Martin-Löf Intensional Type Theory, the terms of that type and its higher identity types form a weak ω-category in the sense of Leinster. Precisely, we construct a contractible globular operad PMLId of definable “composition laws”, and give an action of this operad on the terms of any type and its identity types.

[1]  John Cartmell,et al.  Generalised algebraic theories and contextual categories , 1986, Ann. Pure Appl. Log..

[2]  M. Hofmann,et al.  The groupoid interpretation of type theory , 1998 .

[3]  Michael Batanin,et al.  Monoidal Globular Categories As a Natural Environment for the Theory of Weakn-Categories☆ , 1998 .

[4]  Ross Street,et al.  The petit topos of globular sets , 2000 .

[5]  Tom Leinster A Survey of Definitions of n-Category , 2001 .

[6]  Bart Jacobs,et al.  Categorical Logic and Type Theory , 2001, Studies in logic and the foundations of mathematics.

[7]  K. Roberts,et al.  Thesis , 2002 .

[8]  Tom Leinster Higher Operads, Higher Categories , 2003 .

[9]  Eugenia Cheng,et al.  An ω-category with all Duals is an ω-groupoid , 2007, Appl. Categorical Struct..

[10]  M. Warren Homotopy Theoretic Aspects of Constructive Type Theory , 2008 .

[11]  Benno van den Berg,et al.  Types are weak ω‐groupoids , 2008, 0812.0298.

[12]  Richard Garner,et al.  The identity type weak factorisation system , 2008, Theor. Comput. Sci..

[13]  Richard Garner,et al.  Two-dimensional models of type theory , 2008, Mathematical Structures in Computer Science.

[14]  S. Awodey,et al.  Homotopy theoretic models of identity types , 2007, Mathematical Proceedings of the Cambridge Philosophical Society.

[15]  Richard Garner,et al.  Homomorphisms of higher categories , 2008, 0810.4450.