Theory of inclusion-exclusion integral

A new class of integral that corresponds to a nonadditive measure.The new integral is defined using an interaction operator.Several mathematical properties of this integral are demonstrated.A mathematical model using this integral is proposed and constructed.The mathematical model is applied to a real dataset. We propose an integral with respect to a nonadditive monotone measure. This integral is a generalization of the Lebesgue integral and also the Choquet integral. It has appropriate properties, and can be extensively applied to real data analysis.

[1]  Didier Dubois,et al.  Toll Sets and Toll Logic , 1993 .

[2]  R. Mesiar Choquet-like Integrals , 1995 .

[3]  Michel Grabisch,et al.  A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid , 2010, Ann. Oper. Res..

[4]  M. Sugeno FUZZY MEASURES AND FUZZY INTEGRALS—A SURVEY , 1993 .

[5]  Michel Grabisch,et al.  K-order Additive Discrete Fuzzy Measures and Their Representation , 1997, Fuzzy Sets Syst..

[6]  E. Pap Null-Additive Set Functions , 1995 .

[7]  Michel Grabisch,et al.  A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid , 2010, Ann. Oper. Res..

[8]  K. Menger Statistical Metrics. , 1942, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Jun Okamoto,et al.  Rescaling for Evaluations Using Inclusion-Exclusion Integral , 2014, IPMU.

[10]  Ehud Lehrer,et al.  A New Integral for Capacities , 2005 .

[11]  Michio Sugeno,et al.  Fuzzy t -conorm integral with respect to fuzzy measures: generalization of Sugeno integral and choquet integral , 1991 .

[12]  N. Draper,et al.  Applied Regression Analysis. , 1967 .

[13]  N. Draper,et al.  Applied Regression Analysis , 1967 .

[14]  Didier Dubois,et al.  New Results about Properties and Semantics of Fuzzy Set-Theoretic Operators , 1980 .

[15]  Jun Li,et al.  Integrals based on monotone set functions , 2015, Fuzzy Sets Syst..

[16]  Radko Mesiar,et al.  Lipschitz Continuity of Discrete Universal integrals Based on copulas , 2010, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[17]  J. Dombi A general class of fuzzy operators, the demorgan class of fuzzy operators and fuzziness measures induced by fuzzy operators , 1982 .

[18]  Milan Mares Fuzzy Cooperative Games: Cooperation with Vague Expectations , 2001 .

[19]  Ehud Lehrer,et al.  Decomposition-integral: unifying Choquet and the concave integrals , 2014 .

[20]  G. Choquet Theory of capacities , 1954 .

[21]  Yasuo Narukawa,et al.  Regular non-additive measure and Choquet integral , 2004, Fuzzy Sets Syst..

[22]  George J. Klir,et al.  PAN-INTEGRALS WITH RESPECT TO IMPRECISE PROBABILITIES , 1996 .

[23]  N. Shilkret Maxitive measure and integration , 1971 .

[24]  Sadaaki Miyamoto Bags, Toll Sets, and Fuzzy Sets , 2010, IUM.

[25]  B. Schweizer,et al.  Statistical metric spaces. , 1960 .

[26]  Jun Li,et al.  Superdecomposition integrals , 2015, Fuzzy Sets Syst..

[27]  Radko Mesiar,et al.  Decomposition integrals , 2013, Int. J. Approx. Reason..

[28]  Gilberto Arenas-Díaz,et al.  Fuzzy measures and fuzzy integrals , 2013 .

[29]  Pietro Benvenuti,et al.  General theory of the fuzzy integral , 1996 .

[30]  N. Draper,et al.  Applied Regression Analysis: Draper/Applied Regression Analysis , 1998 .

[31]  Jun Okamoto,et al.  Inclusion-Exclusion Integral and Its Application to Subjective Video Quality Estimation , 2010, IPMU.

[32]  M. Grabisch,et al.  The symmetric and asymmetric Choquet integrals on finite spaces for decision making , 2002 .