Bisimulation Equivalence of First-Order Grammars is ACKERMANN-Complete

Checking whether two pushdown automata with restricted silent actions are weakly bisimilar was shown decidable by Sénizergues (1998, 2005). We provide the first known complexity upper bound for this famous problem, in the equivalent setting of first-order grammars. This ACKERMANN upper bound is optimal, and we also show that strong bisimilarity is primitive-recursive when the number of states of the automata is fixed.

[1]  Petr Jancar,et al.  Bisimulation Equivalence of First-Order Grammars , 2014, ICALP.

[2]  Andrzej S. Murawski,et al.  Bisimilarity of Pushdown Automata is Nonelementary , 2013, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.

[3]  Slawomir Lasota,et al.  Fast equivalence-checking for normed context-free processes , 2010, FSTTCS.

[4]  Faron Moller,et al.  A Polynomial Algorithm for Deciding Bisimilarity of Normed Context-Free Processes , 1994, Theor. Comput. Sci..

[5]  Elias Tahhan-Bittar,et al.  Ordinal Recursive Bounds for Higman's Theorem , 1998, Theor. Comput. Sci..

[6]  Didier Caucal Monadic theory of term rewritings , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.

[7]  Sylvain Schmitz,et al.  Complexity Hierarchies beyond Elementary , 2013, TOCT.

[8]  Petr Jancar,et al.  Equivalence of pushdown automata via first-order grammars , 2018, J. Comput. Syst. Sci..

[9]  J.F.A.K. van Benthem,et al.  Modal Correspondence Theory , 1977 .

[10]  Stanley S. Wainer,et al.  Ordinal recursion, and a refinement of the extended Grzegorczyk hierarchy , 1972, Journal of Symbolic Logic.

[11]  Jirí Srba,et al.  Roadmap of Infinite Results , 2002, Bull. EATCS.

[12]  Petr Jancar Equivalences of Pushdown Systems Are Hard , 2014, FoSSaCS.

[13]  Géraud Sénizergues,et al.  L(A) = L(B)? Decidability Results from Complete Formal Systems , 2002, ICALP.

[14]  Petr Jancar,et al.  Decidability of DPDA Language Equivalence via First-Order Grammars , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[15]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[16]  Géraud Sénizergues,et al.  L(A) = L(B) ? decidability results from complete formal systems , 2001 .

[17]  Colin Stirling,et al.  Deciding DPDA Equivalence Is Primitive Recursive , 2002, ICALP.

[18]  Sylvain Schmitz,et al.  Algorithmic Complexity of Well-Quasi-Orders , 2017 .

[19]  Petr Jancar Deciding Semantic Finiteness of Pushdown Processes and First-Order Grammars w.r.t. Bisimulation Equivalence , 2016, MFCS.

[20]  Xiuting Tao,et al.  Branching Bisimilarity Checking for PRS , 2014, ICALP.

[21]  Géraud Sénizergues,et al.  The Equivalence Problem for Deterministic Pushdown Automata is Decidable , 1997, ICALP.

[22]  Philippe Schnoebelen,et al.  Revisiting Ackermann-Hardness for Lossy Counter Machines and Reset Petri Nets , 2010, MFCS.

[23]  Jirí Srba Beyond Language Equivalence on Visibly Pushdown Automata , 2009, Log. Methods Comput. Sci..

[24]  Stefan Göller,et al.  On Bisimilarity of Higher-Order Pushdown Automata: Undecidability at Order Two , 2012, FSTTCS.

[25]  Sylvain Schmitz,et al.  Complexity Bounds for Ordinal-Based Termination , 2014, ArXiv.

[26]  Stanislav Böhm,et al.  Bisimulation equivalence and regularity for real-time one-counter automata , 2014, J. Comput. Syst. Sci..

[27]  Bruno Courcelle,et al.  Recursive Applicative Program Schemes , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[28]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[29]  Géraud Sénizergues,et al.  Decidability of bisimulation equivalence for equational graphs of finite out-degree , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[30]  Igor Walukiewicz,et al.  On the Expressive Completeness of the Propositional mu-Calculus with Respect to Monadic Second Order Logic , 1996, CONCUR.

[31]  Stefan Kiefer BPA bisimilarity is EXPTIME-hard , 2013, Inf. Process. Lett..

[32]  Jirí Srba,et al.  Undecidability of bisimilarity by defender's forcing , 2008, JACM.

[33]  Géraud Sénizergues,et al.  The Bisimulation Problem for Equational Graphs of Finite Out-Degree , 2000, SIAM J. Comput..

[34]  S. Wainer,et al.  Hierarchies of number-theoretic functions. I , 1970 .

[35]  R. V. Glabbeek The Linear Time-Branching Time Spectrum I The Semantics of Concrete , Sequential ProcessesR , 2007 .

[36]  Petr Jancar,et al.  Bisimilarity on Basic Process Algebra is in 2-ExpTime (an explicit proof) , 2012, Log. Methods Comput. Sci..

[37]  Richard Mayr Undecidability of Weak Bisimulation Equivalence for 1-Counter Processes , 2003, ICALP.

[38]  Bernhard Steffen,et al.  An Elementary Bisimulation Decision Procedure for Arbitrary Context-Free Processes , 1995, MFCS.

[39]  D. Caucal Bisimulation Of Context-Free Grammars And Of Pushdown Automata , 1995 .