Producer Willingness to Pay for Precision Application Technology: Implications for Government and the Technology Industry

This paper focuses on the willingness to pay (WTP) for precision application/site-specific management technologies on the part of agricultural producers. We use a contingent valuation survey to elicit WTP for a package of technologies and examine the impact of government subsidies on potential demand. Results suggest that producer WTP is significantly lower than current technology prices, necessitating a 60% government subsidy to induce adoption, on average. Agronomic factors such as soil characteristic variability and soil quality are important determinants of WTP. In addition, how well the technology integrates into current farming practices and equipment also appears important. Les auteurs s'interessent a la volonte des agriculteurs de payer pour des applications de precision ou des technologies de gestion adaptees a l'exploitation. Ils recourent a une etude d'evaluation des contingences pour jauger la volonte de payer un ensemble de technologies et pour preciser l'incidence des subventions gouvernementales sur la demande potentielle. Les resultats laissent croire que la volonte de payer est sensiblement plus faible que le cout actuel de la technologie, de sorte que l'adoption d'une technologie requiert une subvention publique de 60 %, en moyenne. Les parametres agronomiques comme la variabilite des proprietes et la qualite du sol jouent un role important dans la volonte de payer. Enfin, la maniere dont une technologie s'integre aux pratiques agricoles et au materiel existants parait aussi avoir son importance en la matiere.

[1]  Robert H. Hornbaker,et al.  Site-Specific Crop Management: Adoption Patterns and Incentives , 1999 .

[2]  Ian J. Yule,et al.  A SPATIAL INVENTORY APPROACH TO FARM PLANNING , 1996 .

[3]  Trudy Ann Cameron,et al.  A New Paradigm for Valuing Non-market Goods Using Referendum Data: Maximum Likelihood Estimation by Censored Logistic Regression' , 1988 .

[4]  J. Herriges,et al.  The Regulation of Non-Point Sources of Pollution Under Imperfect and Asymmetric Information , 1992 .

[5]  W. Michael Hanemann,et al.  Statistical Efficiency of Double-Bounded Dichotomous Choice Contingent Valuation , 1991 .

[6]  David Zilberman,et al.  Incentives, precision technology and environmental protection , 1997 .

[7]  Jeffrey L. Gunsolus,et al.  A Bioeconomic Analysis of Site-Specific Management for Weed Control , 1996 .

[8]  T. Cameron Interval Estimates of Non-Market Resource Values from Referendum Contingent Valuation Surveys , 1991 .

[9]  J. Sawyer Concepts of Variable Rate Technology with Considerations for Fertilizer Application , 1994 .

[10]  Hua Wang,et al.  Treatment of “Don't-Know” Responses in Contingent Valuation Surveys: A Random Valuation Model , 1997 .

[11]  Simon Blackmore,et al.  Precision Farming: An Introduction , 1994 .

[12]  G. A. Nielsen,et al.  Farming Soils, Not Fields: A Strategy for Increasing Fertilizer Profitability , 1991 .

[13]  Nicholas E. Flores,et al.  Contingent Valuation: Controversies and Evidence , 2000 .

[14]  M. Khanna,et al.  Sequential Investment in Site-Specific Crop Management Under Output Price Uncertainty , 2001 .

[15]  Diane Hite,et al.  Willingness to Pay for Water Quality Improvements: The Case of Precision Application Technology , 2002 .

[16]  James Lowenberg-DeBoer,et al.  Evaluating the profitability of site-specific farming , 1998 .

[17]  Darrell J. Bosch,et al.  Economic and Environmental Implications of Soil Nitrogen Testing: A Switching-Regression Analysis , 1995 .

[18]  M. Werner Allowing for Zeros in Dichotomous-Choice Contingent-Valuation Models , 1999 .