Near-perfect clique-factors in sparse pseudorandom graphs

We prove that, for any $t \ge 3$, there exists a constant c = c(t) > 0 such that any d-regular n-vertex graph with the second largest eigenvalue in absolute value λ satisfying $\lambda \le c{d^{t - 1}}/{n^{t - 2}}$ contains vertex-disjoint copies of kt covering all but at most ${n^{1 - 1/(8{t^4})}}$ vertices. This provides further support for the conjecture of Krivelevich, Sudakov and Szábo (Combinatorica24 (2004), pp. 403–426) that (n, d, λ)-graphs with n ∈ 3ℕ and $\lambda \le c{d^2}/n$ for a suitably small absolute constant c > 0 contain triangle-factors. Our arguments combine tools from linear programming with probabilistic techniques, and apply them in a certain weighted setting. We expect this method will be applicable to other problems in the field.

[1]  János Komlós,et al.  Blow-up Lemma , 1997, Combinatorics, Probability and Computing.

[2]  Noga Alon,et al.  Approximating the independence number via theϑ-function , 1998, Math. Program..

[3]  Yoshiharu Kohayakawa,et al.  Clique-factors in sparse pseudorandom graphs , 2018, Eur. J. Comb..

[4]  Benny Sudakov,et al.  Triangle Factors In Sparse Pseudo-Random Graphs , 2004, Comb..

[5]  Yoshiharu Kohayakawa,et al.  Near-perfect clique-factors in sparse pseudorandom graphs , 2018, Electron. Notes Discret. Math..

[6]  B. Sudakov,et al.  Pseudo-random Graphs , 2005, math/0503745.

[7]  Jie Han On Perfect Matchings in k-Complexes , 2019, International Mathematics Research Notices.

[8]  Alexandr V. Kostochka,et al.  Partial Steiner systems and matchings in hypergraphs , 1998, Random Struct. Algorithms.

[9]  Zoltán Füredi,et al.  Matchings and covers in hypergraphs , 1988, Graphs Comb..

[10]  Michael Krivelevich Perfect fractional matchings in random hypergraphs , 1996 .

[11]  Noga Alon,et al.  Explicit construction of linear sized tolerant networks , 1988, Discret. Math..

[12]  Vojtech Rödl,et al.  On a Packing and Covering Problem , 1985, Eur. J. Comb..

[13]  Vojtech Rödl,et al.  Large matchings in uniform hypergraphs and the conjectures of Erdős and Samuels , 2011, J. Comb. Theory, Ser. A.

[14]  Noga Alon,et al.  Explicit Ramsey graphs and orthonormal labelings , 1994, Electron. J. Comb..

[15]  Jeff Kahn,et al.  Perfect Fractional Matchings in $k$-Out Hypergraphs , 2017, Electron. J. Comb..

[16]  Benny Sudakov,et al.  A generalization of Turán's theorem , 2005, J. Graph Theory.

[17]  Y. Kohayakawa,et al.  Blow-up lemmas for sparse graphs , 2016, 1612.00622.

[18]  Yufei Zhao,et al.  Extremal results in sparse pseudorandom graphs , 2012, ArXiv.

[19]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[20]  R. Nenadov Triangle‐factors in pseudorandom graphs , 2018, Bulletin of the London Mathematical Society.

[21]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.