Near-perfect clique-factors in sparse pseudorandom graphs
暂无分享,去创建一个
[1] János Komlós,et al. Blow-up Lemma , 1997, Combinatorics, Probability and Computing.
[2] Noga Alon,et al. Approximating the independence number via theϑ-function , 1998, Math. Program..
[3] Yoshiharu Kohayakawa,et al. Clique-factors in sparse pseudorandom graphs , 2018, Eur. J. Comb..
[4] Benny Sudakov,et al. Triangle Factors In Sparse Pseudo-Random Graphs , 2004, Comb..
[5] Yoshiharu Kohayakawa,et al. Near-perfect clique-factors in sparse pseudorandom graphs , 2018, Electron. Notes Discret. Math..
[6] B. Sudakov,et al. Pseudo-random Graphs , 2005, math/0503745.
[7] Jie Han. On Perfect Matchings in k-Complexes , 2019, International Mathematics Research Notices.
[8] Alexandr V. Kostochka,et al. Partial Steiner systems and matchings in hypergraphs , 1998, Random Struct. Algorithms.
[9] Zoltán Füredi,et al. Matchings and covers in hypergraphs , 1988, Graphs Comb..
[10] Michael Krivelevich. Perfect fractional matchings in random hypergraphs , 1996 .
[11] Noga Alon,et al. Explicit construction of linear sized tolerant networks , 1988, Discret. Math..
[12] Vojtech Rödl,et al. On a Packing and Covering Problem , 1985, Eur. J. Comb..
[13] Vojtech Rödl,et al. Large matchings in uniform hypergraphs and the conjectures of Erdős and Samuels , 2011, J. Comb. Theory, Ser. A.
[14] Noga Alon,et al. Explicit Ramsey graphs and orthonormal labelings , 1994, Electron. J. Comb..
[15] Jeff Kahn,et al. Perfect Fractional Matchings in $k$-Out Hypergraphs , 2017, Electron. J. Comb..
[16] Benny Sudakov,et al. A generalization of Turán's theorem , 2005, J. Graph Theory.
[17] Y. Kohayakawa,et al. Blow-up lemmas for sparse graphs , 2016, 1612.00622.
[18] Yufei Zhao,et al. Extremal results in sparse pseudorandom graphs , 2012, ArXiv.
[19] Béla Bollobás,et al. Modern Graph Theory , 2002, Graduate Texts in Mathematics.
[20] R. Nenadov. Triangle‐factors in pseudorandom graphs , 2018, Bulletin of the London Mathematical Society.
[21] Svante Janson,et al. Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.