Feasible Annotation Scheme for Capturing Policy Argument Reasoning using Argument Templates

Most of the existing works on argument mining cast the problem of argumentative structure identification as classification tasks (e.g. attack-support relations, stance, explicit premise/claim). This paper goes a step further by addressing the task of automatically identifying reasoning patterns of arguments using predefined templates, which is called argument template (AT) instantiation. The contributions of this work are three-fold. First, we develop a simple, yet expressive set of easily annotatable ATs that can represent a majority of writer’s reasoning for texts with diverse policy topics while maintaining the computational feasibility of the task. Second, we create a small, but highly reliable annotated corpus of instantiated ATs on top of reliably annotated support and attack relations and conduct an annotation study. Third, we formulate the task of AT instantiation as structured prediction constrained by a feasible set of templates. Our evaluation demonstrates that we can annotate ATs with a reasonably high inter-annotator agreement, and the use of template-constrained inference is useful for instantiating ATs with only partial reasoning comprehension clues.

[1]  William C. Mann,et al.  Rhetorical Structure Theory: Description and Construction of Text Structures , 1987 .

[2]  Michael Collins,et al.  Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms , 2002, EMNLP.

[3]  Rashmi Prasad,et al.  The Penn Discourse Treebank , 2004, LREC.

[4]  Eddo Rigotti,et al.  Relevance of Context-bound loci to Topical Potential in the Argumentation Stage , 2007 .

[5]  Marie-Francine Moens,et al.  Language Resources for Studying Argument , 2008, LREC.

[6]  Chris Reed,et al.  Argumentation Schemes , 2008 .

[7]  Livio Robaldo,et al.  The Penn Discourse TreeBank 2.0. , 2008, LREC.

[8]  Swapna Somasundaran,et al.  Recognizing Stances in Ideological On-Line Debates , 2010, HLT-NAACL 2010.

[9]  Graeme Hirst,et al.  Classifying arguments by scheme , 2011, ACL.

[10]  Sampo Pyysalo,et al.  brat: a Web-based Tool for NLP-Assisted Text Annotation , 2012, EACL.

[11]  Jong-Hoon Oh,et al.  Excitatory or Inhibitory: A New Semantic Orientation Extracts Contradiction and Causality from the Web , 2012, EMNLP.

[12]  Benjamin Van Durme,et al.  Open Domain Targeted Sentiment , 2013, EMNLP.

[13]  Amy Beth Warriner,et al.  Norms of valence, arousal, and dominance for 13,915 English lemmas , 2013, Behavior Research Methods.

[14]  Ming Zhou,et al.  Adaptive Recursive Neural Network for Target-dependent Twitter Sentiment Classification , 2014, ACL.

[15]  Vincent Ng,et al.  Why are You Taking this Stance? Identifying and Classifying Reasons in Ideological Debates , 2014, EMNLP.

[16]  Iryna Gurevych,et al.  Annotating Argument Components and Relations in Persuasive Essays , 2014, COLING.

[17]  Beata Beigman Klebanov,et al.  Applying Argumentation Schemes for Essay Scoring , 2014, ArgMining@ACL.

[18]  Naoaki Okazaki,et al.  A Computational Approach for Generating Toulmin Model Argumentation , 2015, ArgMining@HLT-NAACL.

[19]  Dong Wang,et al.  Relation Classification via Recurrent Neural Network , 2015, ArXiv.

[20]  A. Peldszus An Annotated Corpus of Argumentative Microtexts , 2015 .

[21]  Mitesh M. Khapra,et al.  Show Me Your Evidence - an Automatic Method for Context Dependent Evidence Detection , 2015, EMNLP.

[22]  Manfred Stede,et al.  Joint prediction in MST-style discourse parsing for argumentation mining , 2015, EMNLP.

[23]  Mark Johnson,et al.  An Improved Non-monotonic Transition System for Dependency Parsing , 2015, EMNLP.

[24]  Nancy Green,et al.  Identifying Argumentation Schemes in Genetics Research Articles , 2015, ArgMining@HLT-NAACL.

[25]  Chris Reed,et al.  Argument Mining Using Argumentation Scheme Structures , 2016, COMMA.

[26]  Vincent Ng,et al.  Modeling Stance in Student Essays , 2016, ACL.

[27]  Benno Stein,et al.  Using Argument Mining to Assess the Argumentation Quality of Essays , 2016, COLING.

[28]  Debanjan Ghosh,et al.  Towards Feasible Guidelines for the Annotation of Argument Schemes , 2016, ArgMining@ACL.

[29]  Debanjan Ghosh,et al.  Coarse-grained Argumentation Features for Scoring Persuasive Essays , 2016, ACL.

[30]  Francesca Toni,et al.  Identifying attack and support argumentative relations using deep learning , 2017, EMNLP.

[31]  Iryna Gurevych,et al.  Neural End-to-End Learning for Computational Argumentation Mining , 2017, ACL.

[32]  Benno Stein,et al.  Unit Segmentation of Argumentative Texts , 2017, ArgMining@EMNLP.

[33]  Iryna Gurevych,et al.  Parsing Argumentation Structures in Persuasive Essays , 2016, CL.

[34]  Benno Stein,et al.  The Argument Reasoning Comprehension Task , 2017, ArXiv.

[35]  Claire Cardie,et al.  Argument Mining with Structured SVMs and RNNs , 2017, ACL.

[36]  Chris Reed,et al.  Preliminary Results from an Argument Corpus , 2022 .