Conformance Tests as Checking Experiments for Partial Nondeterministic FSM

The paper addresses the problem of confonnance test generation from input/output FSMs that might be partially specified and nondeterministic. Two confonnance relations are considered, quasi-reduction and quasi-equivalence. The former requires that in response to each input sequence defined in a specification FSM, a conforming implementation FSM produces only output sequences of the specification FSM, while the latter is stronger: a conforming implementation FSM must produce all of them and nothing else. For each relation, a test generation method is elaborated. The resulting tests are proven to be complete, i.e., sound and exhaustive, for a given bound on the number of states; they include as special cases checking experiments for deterministic FSMs.

[1]  G. Bochmann,et al.  Testing deterministic implementations from nondeterministic FSM specifications , 1996 .

[2]  Nina Yevtushenko,et al.  Nondeterministic State Machines in Protocol Conformance Testing , 1993, Protocol Test Systems.

[3]  Alexandre Petrenko,et al.  Selecting test sequences for partially-specified nondeterministic finite state machines , 1995 .

[4]  Robert M. Hierons,et al.  Generating Candidates When Testing a Deterministic Implementation against a Non-deterministic Finite-state Machine , 2003, Comput. J..

[5]  Margus Veanes,et al.  Optimal strategies for testing nondeterministic systems , 2004, ISSTA '04.

[6]  Fan Zhang,et al.  Optimal Transfer Trees and Distinguishing Trees for Testing Observable Nondeterministic Finite-State Machines , 2003, IEEE Trans. Software Eng..

[7]  Sergiy Boroday Distinguishing Tests for Nondeterministic Finite State Machines , 1998, IWTCS.

[8]  Dorofeeva Margarita Yurievna,et al.  Adaptive test generation from a nondeterministic fsm , 2004 .

[9]  Alexandre Petrenko,et al.  Test Selection Based on Communicating Nondeterministic Finite-State Machines Using a Generalized WP-Method , 1994, IEEE Trans. Software Eng..

[10]  Nina Yevtushenko,et al.  On Test Derivation from Partial Specifications , 2000, FORTE.

[11]  Hans Kloosterman,et al.  Test Derivation from Non-Deterministic Finite State Machines , 1992, Protocol Test Systems.

[12]  Robert M. Hierons,et al.  Adaptive Testing of a Deterministic Implementation Against a Nondeterministic Finite State Machine , 1998, Comput. J..

[13]  Rajeev Alur,et al.  Distinguishing tests for nondeterministic and probabilistic machines , 1995, STOC '95.

[14]  Sagar Naik,et al.  Generation of Adaptive Test Cases from Nondeterministic Finite State Models , 1992, Protocol Test Systems.

[15]  Hasan Ural,et al.  A test generation algorithm for systems modelled as non-deterministic FSMs , 1993, Softw. Eng. J..

[16]  Robert M. Hierons,et al.  Concerning the Ordering of Adaptive Test Sequences , 2003, FORTE.

[17]  Tae-Hyong Kim,et al.  Test selection for a nondeterministic FSM , 2001, Comput. Commun..

[18]  Nina Yevtushenko,et al.  Testing from partial deterministic FSM specifications , 2005, IEEE Transactions on Computers.

[19]  Diego Latella,et al.  Formal methods for distributed system development : FORTE/PSTV 2000, IFIP TC6 WG6.1 Joint International Conference on Formal Description Techniques for Distributed Systems and Communication Protocols (FORTE XIII) and Protocol Specification, Testing and Verification (PSTV XX), October 10-13, 2000, Pi , 2000 .

[20]  Alexandre Petrenko Checking Experiments with Protocol Machines , 1991, Protocol Test Systems.

[21]  David Lee,et al.  Coping with Nondeterminism in Network Protocol Testing , 2005, TestCom.

[22]  Robert M. Hierons,et al.  Testing from a nondeterministic finite state machine using adaptive state counting , 2004, IEEE Transactions on Computers.