Spatially resolved gene regulatory and disease vulnerability map of the adult Macaque cortex

Single cell approaches have increased our knowledge about the cell type composition of the non-human primate (NHP), but a detailed characterization of area-specific regulatory features remains outstanding. We generated single-cell chromatin accessibility (single-cell ATAC) and transcriptomic data of 358,237 cells from prefrontal cortex (PFC), primary motor cortex (M1) and primary visual cortex (V1) of adult cynomolgus monkey brain, and integrated this dataset with Stereo-seq (Spatio-Temporal Enhanced REsolution Omics-sequencing) of the corresponding cortical areas to assign topographic information to molecular states. We identified area-specific chromatin accessible sites and their targeted genes, including the cell type-specific transcriptional regulatory network associated with excitatory neurons heterogeneity. We reveal calcium ion transport and axon guidance genes related to specialized functions of PFC and M1, identified the similarities and differences between adult macaque and human oligodendrocyte trajectories, and mapped the genetic variants and gene perturbations of human diseases to NHP cortical cells. This resource establishes a transcriptomic and chromatin accessibility combinatory regulatory landscape at a single-cell and spatially resolved resolution in NHP cortex.

[1]  Huanming Yang,et al.  Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays , 2021, Cell.

[2]  Evan Z. Macosko,et al.  Comparative cellular analysis of motor cortex in human, marmoset and mouse , 2021, Nature.

[3]  Pawel F. Przytycki,et al.  Single-cell epigenomics reveals mechanisms of human cortical development , 2021, Nature.

[4]  V. Swarup,et al.  Single-nucleus chromatin accessibility and transcriptomic characterization of Alzheimer’s disease , 2021, Nature Genetics.

[5]  Howard Y. Chang,et al.  ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis , 2021, Nature Genetics.

[6]  Howard Y. Chang,et al.  Chromatin and gene-regulatory dynamics of the developing human cerebral cortex at single-cell resolution , 2020, Cell.

[7]  R. Pfundt,et al.  Disruption of RFX family transcription factors causes autism, attention-deficit/hyperactivity disorder, intellectual disability, and dysregulated behavior , 2020, Genetics in Medicine.

[8]  Hongkui Zeng,et al.  A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation , 2020, Cell.

[9]  J. Davila-Velderrain,et al.  Single-cell dissection of schizophrenia reveals neurodevelopmental-synaptic axis and transcriptional resilience , 2020, medRxiv.

[10]  T. Shimamura,et al.  ARHGAP10, which encodes Rho GTPase-activating protein 10, is a novel gene for schizophrenia risk , 2020, Translational Psychiatry.

[11]  G. Rees,et al.  The human motor cortex microcircuit: insights for neurodegenerative disease , 2020, Nature Reviews Neuroscience.

[12]  Holger Heyn,et al.  Seeded NMF regression to Deconvolute Spatial Transcriptomics Spots with Single-Cell Transcriptomes , 2020 .

[13]  Shuijin He,et al.  Imbalance of Excitatory/Inhibitory Neuron Differentiation in Neurodevelopmental Disorders with an NR2F1 Point Mutation. , 2020, Cell reports.

[14]  J. Kleinman,et al.  Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex , 2020, Nature Neuroscience.

[15]  Tao Tan,et al.  Transcriptomic and open chromatin atlas of high-resolution anatomical regions in the rhesus macaque brain , 2020, Nature Communications.

[16]  Joakim Lundeberg,et al.  Molecular atlas of the adult mouse brain , 2019, Science Advances.

[17]  J. I. Izpisúa Belmonte,et al.  Dissecting primate early post-implantation development using long-term in vitro embryo culture , 2019, Science.

[18]  James B. Brewer,et al.  Brain cell type–specific enhancer–promoter interactome maps and disease-risk association , 2019, Science.

[19]  Zhifeng Wang,et al.  A portable and cost-effective microfluidic system for massively parallel single-cell transcriptome profiling , 2019, bioRxiv.

[20]  Enrico Petretto,et al.  A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation , 2019, Nature Neuroscience.

[21]  F. Wang,et al.  CRISPR/Cas9-mediated genome editing in nonhuman primates , 2019, Disease Models & Mechanisms.

[22]  S. Pääbo,et al.  Single-cell-resolution transcriptome map of human, chimpanzee, bonobo, and macaque brains , 2019, bioRxiv.

[23]  J. Knowles,et al.  Deconvolution of transcriptional networks identifies TCF4 as a master regulator in schizophrenia , 2019, Science Advances.

[24]  T. Kuner,et al.  The impact of Semaphorin 4C/Plexin-B2 signaling on fear memory via remodeling of neuronal and synaptic morphology , 2019, Molecular Psychiatry.

[25]  Allan R. Jones,et al.  Conserved cell types with divergent features in human versus mouse cortex , 2019, Nature.

[26]  Maximilian Haeussler,et al.  Single-cell genomics identifies cell type–specific molecular changes in autism , 2019, Science.

[27]  Manolis Kellis,et al.  Single-cell transcriptomic analysis of Alzheimer’s disease , 2019, Nature.

[28]  Roman Spektor,et al.  Single cell ATAC-seq identifies broad changes in neuronal abundance and chromatin accessibility in Down Syndrome , 2019, bioRxiv.

[29]  E. Bézard,et al.  Local transgene expression and whole‐body transgenesis to model brain diseases in nonhuman primate , 2019, Animal models and experimental medicine.

[30]  Dheeraj Malhotra,et al.  Altered human oligodendrocyte heterogeneity in multiple sclerosis , 2019, Nature.

[31]  R. Marioni,et al.  Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions , 2018, Nature Neuroscience.

[32]  Gerome Breen,et al.  Genetic identification of brain cell types underlying schizophrenia , 2017, Nature Genetics.

[33]  Daniel J. Miller,et al.  Spatiotemporal transcriptomic divergence across human and macaque brain development , 2018, Science.

[34]  Annie W Shieh,et al.  Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder , 2018, Science.

[35]  B. Barres,et al.  Spatiotemporal Control of CNS Myelination by Oligodendrocyte Programmed Cell Death through the TFEB-PUMA Axis , 2018, Cell.

[36]  D. Lyons,et al.  Myelin Dynamics Throughout Life: An Ever-Changing Landscape? , 2018, Front. Cell. Neurosci..

[37]  Christoph Hafemeister,et al.  Comprehensive integration of single cell data , 2018, bioRxiv.

[38]  Allan R. Jones,et al.  Shared and distinct transcriptomic cell types across neocortical areas , 2018, Nature.

[39]  Qi Zhou,et al.  SIRT6 deficiency results in developmental retardation in cynomolgus monkeys , 2018, Nature.

[40]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[41]  D. Dickel,et al.  Single-nucleus analysis of accessible chromatin in developing mouse forebrain reveals cell-type-specific transcriptional regulation , 2018, Nature Neuroscience.

[42]  M. Wegner,et al.  Sox8 and Sox10 jointly maintain myelin gene expression in oligodendrocytes , 2018, Glia.

[43]  P. Kharchenko,et al.  Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain , 2017, Nature Biotechnology.

[44]  Alex A. Pollen,et al.  Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex , 2017, Science.

[45]  L. Richards,et al.  Combined allelic dosage of Nfia and Nfib regulates cortical development , 2017, Brain and neuroscience advances.

[46]  William J. Greenleaf,et al.  chromVAR: Inferring transcription factor-associated accessibility from single-cell epigenomic data , 2017, Nature Methods.

[47]  Dinggang Shen,et al.  Modeling Rett Syndrome Using TALEN-Edited MECP2 Mutant Cynomolgus Monkeys , 2017, Cell.

[48]  Andrew J. Hill,et al.  Single-cell mRNA quantification and differential analysis with Census , 2017, Nature Methods.

[49]  J. Brotchie,et al.  Towards a Non-Human Primate Model of Alpha-Synucleinopathy for Development of Therapeutics for Parkinson’s Disease: Optimization of AAV1/2 Delivery Parameters to Drive Sustained Expression of Alpha Synuclein and Dopaminergic Degeneration in Macaque , 2016, PloS one.

[50]  Allan R. Jones,et al.  Comprehensive transcriptional map of primate brain development , 2016, Nature.

[51]  M. Ronaghi,et al.  Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain , 2016, Science.

[52]  Jens Hjerling-Leffler,et al.  Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system , 2016, Science.

[53]  Sara B. Linker,et al.  Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons , 2016, Nature Protocols.

[54]  M. Wegner,et al.  Transcription factors Sox5 and Sox6 exert direct and indirect influences on oligodendroglial migration in spinal cord and forebrain , 2016, Glia.

[55]  Axel Visel,et al.  Pbx Regulates Patterning of the Cerebral Cortex in Progenitors and Postmitotic Neurons , 2015, Neuron.

[56]  Guillermo Lopez-Campos,et al.  Semaphorin and plexin gene expression is altered in the prefrontal cortex of schizophrenia patients with and without auditory hallucinations , 2015, Psychiatry Research.

[57]  B. Emery,et al.  Transcriptional and Epigenetic Regulation of Oligodendrocyte Development and Myelination in the Central Nervous System. , 2015, Cold Spring Harbor perspectives in biology.

[58]  Andrew C. Adey,et al.  Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing , 2015, Science.

[59]  David J. Price,et al.  Regulation of cerebral cortical neurogenesis by the Pax6 transcription factor , 2015, Front. Cell. Neurosci..

[60]  Jean-Michel Verdier,et al.  Lessons from the analysis of nonhuman primates for understanding human aging and neurodegenerative diseases , 2015, Front. Neurosci..

[61]  Klaus-Armin Nave,et al.  Oligodendrocytes: Myelination and Axonal Support. , 2015, Cold Spring Harbor perspectives in biology.

[62]  Andrew C. Adey,et al.  Haplotype-resolved whole-genome sequencing by contiguity-preserving transposition and combinatorial indexing , 2014, Nature Genetics.

[63]  Z. Dai,et al.  Stage-Specific Regulation of Oligodendrocyte Development by Wnt/β-Catenin Signaling , 2014, The Journal of Neuroscience.

[64]  M. Wegner,et al.  The Transcription Factors Sox10 and Myrf Define an Essential Regulatory Network Module in Differentiating Oligodendrocytes , 2013, PLoS genetics.

[65]  B. '. ’t Hart,et al.  Induction of Experimental Autoimmune Encephalomyelitis With Recombinant Human Myelin Oligodendrocyte Glycoprotein in Incomplete Freund’s Adjuvant in Three Non-human Primate Species , 2013, Journal of Neuroimmune Pharmacology.

[66]  T. Südhof,et al.  Rapid Single-Step Induction of Functional Neurons from Human Pluripotent Stem Cells , 2013, Neuron.

[67]  M. Dragunow,et al.  The transcription factor PU.1 is critical for viability and function of human brain microglia , 2013, Glia.

[68]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[69]  Allan R. Jones,et al.  Transcriptional Architecture of the Primate Neocortex , 2012, Neuron.

[70]  L. Richards,et al.  Transcription factor Lhx2 is necessary and sufficient to suppress astrogliogenesis and promote neurogenesis in the developing hippocampus , 2011, International Journal of Developmental Neuroscience.

[71]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[72]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[73]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[74]  Thomas W. Mühleisen,et al.  Polymorphisms in SREBF1 and SREBF2, two antipsychotic-activated transcription factors controlling cellular lipogenesis, are associated with schizophrenia in German and Scandinavian samples , 2010, Molecular Psychiatry.

[75]  T. Yamamori,et al.  Prefrontal-Enriched SLIT1 Expression in Old World Monkey Cortex Established during the Postnatal Development , 2010, Cerebral cortex.

[76]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[77]  A. Visel,et al.  Combinatorial Regulation of Endothelial Gene Expression by Ets and Forkhead Transcription Factors , 2008, Cell.

[78]  Lokesh Kumar,et al.  Mfuzz: A software package for soft clustering of microarray data , 2007, Bioinformation.

[79]  R. Ridley,et al.  Long-term consequences of human alpha-synuclein overexpression in the primate ventral midbrain. , 2007, Brain : a journal of neurology.

[80]  Steven W. Flavell,et al.  Activity-Dependent Regulation of MEF2 Transcription Factors Suppresses Excitatory Synapse Number , 2006, Science.

[81]  D. Gutmann,et al.  Inactivation of NF1 in CNS causes increased glial progenitor proliferation and optic glioma formation , 2005, Development.

[82]  R. Huganir,et al.  Tyrosine Phosphorylation and Regulation of the AMPA Receptor by Src Family Tyrosine Kinases , 2004, The Journal of Neuroscience.

[83]  T. Kaneko,et al.  Organization and development of corticocortical associative neurons expressing the orphan nuclear receptor Nurr1 , 2003, The Journal of comparative neurology.

[84]  K. Hunt The Single Species Hypothesis: Truly Dead and Pushing Up Bushes, or Still Twitching and Ripe for Resuscitation? , 2003, Human biology.

[85]  J. Frank,et al.  Determinant spreading associated with demyelination in a nonhuman primate model of multiple sclerosis. , 1999, Journal of immunology.

[86]  B. Jenkins,et al.  Selective putaminal excitotoxic lesions in non-human primates model the movement disorder of Huntington disease , 1995, Neuroscience.

[87]  Elsdon Storey,et al.  Excitotoxin Lesions in Primates as a Model for Huntington's Disease: Histopathologic and Neurochemical Characterization , 1993, Experimental Neurology.