Towards a whole‐genome sequence for rye (Secale cereale L.)

We report on a whole-genome draft sequence of rye (Secale cereale L.). Rye is a diploid Triticeae species closely related to wheat and barley, and an important crop for food and feed in Central and Eastern Europe. Through whole-genome shotgun sequencing of the 7.9-Gbp genome of the winter rye inbred line Lo7 we obtained a de novo assembly represented by 1.29 million scaffolds covering a total length of 2.8 Gbp. Our reference sequence represents nearly the entire low-copy portion of the rye genome. This genome assembly was used to predict 27 784 rye gene models based on homology to sequenced grass genomes. Through resequencing of 10 rye inbred lines and one accession of the wild relative S. vavilovii, we discovered more than 90 million single nucleotide variants and short insertions/deletions in the rye genome. From these variants, we developed the high-density Rye600k genotyping array with 600 843 markers, which enabled anchoring the sequence contigs along a high-density genetic map and establishing a synteny-based virtual gene order. Genotyping data were used to characterize the diversity of rye breeding pools and genetic resources, and to obtain a genome-wide map of selection signals differentiating the divergent gene pools. This rye whole-genome sequence closes a gap in Triticeae genome research, and will be highly valuable for comparative genomics, functional studies and genome-based breeding in rye.

[1]  T. Miedaner,et al.  Rye introgression lines as source of alleles for pollen-fertility restoration in Pampa CMS. , 2009 .

[2]  Wenlong Yang,et al.  Draft genome of the wheat A-genome progenitor Triticum urartu , 2013, Nature.

[3]  Nansheng Chen,et al.  CooVar: Co-occurring variant analyzer , 2012, BMC Research Notes.

[4]  David C. Nickle,et al.  ViroBLAST: a stand-alone BLAST web server for flexible queries of multiple databases and user's datasets , 2007, Bioinform..

[5]  U. Scholz,et al.  Kmasker - A Tool for in silico Prediction of Single-Copy FISH Probes for the Large-Genome Species Hordeum vulgare , 2013, Cytogenetic and Genome Research.

[6]  Mosè Manni,et al.  BUSCO: Assessing Genome Assembly and Annotation Completeness. , 2019, Methods in molecular biology.

[7]  P. Fernández-Rueda,et al.  Homoeology of rye chromosome arms to wheat , 1991, Theoretical and Applied Genetics.

[8]  Gordon Gremme,et al.  Engineering a software tool for gene structure prediction in higher organisms , 2005, Inf. Softw. Technol..

[9]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[10]  K. Yelick,et al.  A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome , 2015, Genome Biology.

[11]  M. Frisch,et al.  Detection of donor effects in a rye introgression population with genome‐wide prediction , 2015 .

[12]  Teresa A. Webster,et al.  High‐density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool , 2015, Plant biotechnology journal.

[13]  D. Ankerst,et al.  High levels of nucleotide diversity and fast decline of linkage disequilibrium in rye (Secale cereale L.) genes involved in frost response , 2011, BMC Plant Biology.

[14]  T. Miedaner,et al.  Identification of genomic regions carrying QTL for agronomic and quality traits in rye (Secale cereale) introgression libraries. , 2009 .

[15]  R. Snowdon,et al.  Understanding and utilizing crop genome diversity via high-resolution genotyping. , 2016, Plant biotechnology journal.

[16]  M. Beaumont,et al.  Evaluating loci for use in the genetic analysis of population structure , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[17]  Gordon Luikart,et al.  LOSITAN: A workbench to detect molecular adaptation based on a Fst-outlier method , 2008, BMC Bioinformatics.

[18]  J. Batley,et al.  A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome , 2014, Science.

[19]  J. Vega,et al.  Neocentric activity of rye 5RL chromosome in wheat , 2004, Chromosome Research.

[20]  G. Muehlbauer,et al.  Population structure and linkage disequilibrium in elite barley breeding germplasm from the United States , 2012, Journal of Zhejiang University SCIENCE B.

[21]  A. Graner,et al.  Mapping-by-sequencing accelerates forward genetics in barley , 2014, Genome Biology.

[22]  J. Chapman,et al.  Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ) , 2013, The Plant journal : for cell and molecular biology.

[23]  S. Begum,et al.  Sequence Alignment , 2018, Beginners Guide to Bioinformatics for High Throughput Sequencing.

[24]  A comprehensive study of the genomic differentiation between temperate Dent and Flint maize , 2016, Genome Biology.

[25]  Christopher D Town,et al.  A first survey of the rye (Secale cereale) genome composition through BAC end sequencing of the short arm of chromosome 1R , 2008, BMC Plant Biology.

[26]  Chris-Carolin Schön,et al.  synbreed: a framework for the analysis of genomic prediction data using R , 2012, Bioinform..

[27]  B. S. Dhillon,et al.  Molecular marker assisted broadening of the Central European heterotic groups in rye with Eastern European germplasm , 2009, Theoretical and Applied Genetics.

[28]  Gonçalo R. Abecasis,et al.  The variant call format and VCFtools , 2011, Bioinform..

[29]  M. Platzer,et al.  Multiplex sequencing of bacterial artificial chromosomes for assembling complex plant genomes , 2016, Plant biotechnology journal.

[30]  Anil S. Thanki,et al.  transPLANT Resources for Triticeae Genomic Data , 2016, The plant genome.

[31]  M. Yano,et al.  Q-TARO: QTL Annotation Rice Online Database , 2010, Rice.

[32]  M. Margis-Pinheiro,et al.  Chloroplastic and mitochondrial GPX genes play a critical role in rice development , 2014, Biologia Plantarum.

[33]  M. Platzer,et al.  A whole-genome snapshot of 454 sequences exposes the composition of the barley genome and provides evidence for parallel evolution of genome size in wheat and barley. , 2009, The Plant journal : for cell and molecular biology.

[34]  Serban Nacu,et al.  Fast and SNP-tolerant detection of complex variants and splicing in short reads , 2010, Bioinform..

[35]  M. Robles,et al.  University of Birmingham High throughput functional annotation and data mining with the Blast2GO suite , 2022 .

[36]  Lukas Wagner,et al.  A Greedy Algorithm for Aligning DNA Sequences , 2000, J. Comput. Biol..

[37]  M. Berriman,et al.  A comprehensive evaluation of assembly scaffolding tools , 2014, Genome Biology.

[38]  Katrien M. Devos,et al.  Chromosomal rearrangements in the rye genome relative to that of wheat , 1993, Theoretical and Applied Genetics.

[39]  D. Fowler,et al.  Growth, Development, and Cold Tolerence of Fall‐acclimated Cereal Grains 1 , 1979 .

[40]  J. Dvorak,et al.  Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.) , 2010, BMC Genomics.

[41]  V. Korzun,et al.  Geography and end use drive the diversification of worldwide winter rye populations , 2016, Molecular ecology.

[42]  G. Oettler The fortune of a botanical curiosity – Triticale: past, present and future , 2005, The Journal of Agricultural Science.

[43]  Qian Qian,et al.  Short panicle1 encodes a putative PTR family transporter and determines rice panicle size. , 2009, The Plant journal : for cell and molecular biology.

[44]  Thomas Nussbaumer,et al.  PGSB PlantsDB: updates to the database framework for comparative plant genome research , 2015, Nucleic Acids Res..

[45]  B. Weir,et al.  ESTIMATING F‐STATISTICS FOR THE ANALYSIS OF POPULATION STRUCTURE , 1984, Evolution; international journal of organic evolution.

[46]  Mihaela M. Martis,et al.  The Sorghum bicolor genome and the diversification of grasses , 2009, Nature.

[47]  Uwe Scholz,et al.  PGP repository: a plant phenomics and genomics data publication infrastructure , 2016, Database J. Biol. Databases Curation.

[48]  J. D. Jones,et al.  The structure, amount and chromosomal localisation of defined repeated DNA sequences in species of the genus Secale , 1982, Chromosoma.

[49]  Walter Pirovano,et al.  BIOINFORMATICS APPLICATIONS , 2022 .

[50]  Hongwen Huang,et al.  Development and characterization of polymorphic microsatellite loci in endangered fern Adiantum reniforme var. sinense , 2006, Conservation Genetics.

[51]  Sai Guna Ranjan Gurazada,et al.  Genome sequencing and analysis of the model grass Brachypodium distachyon , 2010, Nature.

[52]  Uwe Scholz,et al.  Unlocking the Barley Genome by Chromosomal and Comparative Genomics[W][OA] , 2011, Plant Cell.

[53]  R. B. Flavell,et al.  Genome size and the proportion of repeated nucleotide sequence DNA in plants , 1974, Biochemical Genetics.

[54]  G. Coop,et al.  Robust Identification of Local Adaptation from Allele Frequencies , 2012, Genetics.

[55]  Z. Fei,et al.  De novo and comparative transcriptome analysis of cultivated and wild spinach , 2015, Scientific Reports.

[56]  H. Piepho,et al.  Genetic architecture of plant height in winter rye introgression libraries , 2011 .

[57]  S. Rabinovich Importance of wheat-rye translocations for breeding modern cultivars of Triticum aestivum L. , 1997 .

[58]  Uwe Scholz,et al.  LAILAPS: The Plant Science Search Engine , 2014, Plant & cell physiology.

[59]  A. Myburg,et al.  Combined de novo and genome guided assembly and annotation of the Pinus patula juvenile shoot transcriptome , 2015, BMC Genomics.

[60]  Uwe Scholz,et al.  Reticulate Evolution of the Rye Genome[W][OPEN] , 2013, Plant Cell.

[61]  M. Yano,et al.  A Novel Cytochrome P450 Is Implicated in Brassinosteroid Biosynthesis via the Characterization of a Rice Dwarf Mutant, dwarf11, with Reduced Seed Length , 2005, The Plant Cell Online.

[62]  E. Pahlich,et al.  A rapid DNA isolation procedure for small quantities of fresh leaf tissue , 1980 .

[63]  T. Miedaner,et al.  Rye ( Secale cereale L.) , 2009 .

[64]  Tae-Ho Lee,et al.  SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data , 2014, BMC Genomics.

[65]  S. Rabinovich Importance of wheat-rye translocations for breeding modern cultivar of Triticum aestivum L. , 2004, Euphytica.

[66]  A. Ressayre,et al.  GC content evolution in coding regions of angiosperm genomes: a unifying hypothesis. , 2014, Trends in genetics : TIG.

[67]  Anne-Béatrice Dufour,et al.  The ade4 Package: Implementing the Duality Diagram for Ecologists , 2007 .

[68]  R. Jorgensen,et al.  Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[69]  H. Piepho,et al.  Model training across multiple breeding cycles significantly improves genomic prediction accuracy in rye (Secale cereale L.) , 2016, Theoretical and Applied Genetics.

[70]  K. Toriyama,et al.  DCW11, down-regulated gene 11 in CW-type cytoplasmic male sterile rice, encoding mitochondrial protein phosphatase 2c is related to cytoplasmic male sterility. , 2008, Plant & cell physiology.

[71]  M. Schatz,et al.  Assembly of large genomes using second-generation sequencing. , 2010, Genome research.

[72]  Mihaela M. Martis,et al.  A physical, genetic and functional sequence assembly of the barley genome. , 2022 .

[73]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[74]  P. Wehling,et al.  An Isozyme Marker for Pollen Fertility Restoration in the Pampa cms System of Rye (Secale cereale L.) , 1993 .

[75]  J. Reif,et al.  Genetic architecture of complex agronomic traits examined in two testcross populations of rye (Secale cereale L.) , 2012, BMC Genomics.

[76]  Mihaela M. Martis,et al.  Genes on B chromosomes: old questions revisited with new tools. , 2015, Biochimica et biophysica acta.

[77]  T. Miedaner,et al.  Mapping of genes for male-fertility restoration in ’Pampa’ CMS winter rye (Secale cereale L.) , 2000, Theoretical and Applied Genetics.

[78]  Lior Pachter,et al.  Identification of novel transcripts in annotated genomes using RNA-Seq , 2011, Bioinform..

[79]  Yadan Luo,et al.  Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation , 2013, Nature.

[80]  H. Rees,et al.  Selection for Heterozygotes during Inbreeding , 1956, Nature.

[81]  Pui-Yan Kwok,et al.  Rapid Genome Mapping in Nanochannel Arrays for Highly Complete and Accurate De Novo Sequence Assembly of the Complex Aegilops tauschii Genome , 2013, PloS one.

[82]  T. Wicker,et al.  TREP: a database for Triticeae repetitive elements , 2002 .

[83]  D. Schwartz,et al.  Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data , 2013, Rice.

[84]  A. Börner,et al.  RFLP mapping of genes affecting plant height and growth habit in rye , 1993, Theoretical and Applied Genetics.

[85]  Uwe Scholz,et al.  From RNA-seq to large-scale genotyping - genomics resources for rye (Secale cereale L.) , 2011, BMC Plant Biology.

[86]  Heng Li,et al.  Improving SNP discovery by base alignment quality , 2011, Bioinform..

[87]  Uwe Scholz,et al.  e!DAL - a framework to store, share and publish research data , 2014, BMC Bioinformatics.

[88]  M. McMullen,et al.  Genetic Properties of the Maize Nested Association Mapping Population , 2009, Science.

[89]  J. Holland,et al.  Genetic architecture of complex traits in plants. , 2007, Current opinion in plant biology.

[90]  Axel Himmelbach,et al.  Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond , 2013, The Plant journal : for cell and molecular biology.

[91]  B. Kilian,et al.  Comparative analysis of genome composition in Triticeae reveals strong variation in transposable element dynamics and nucleotide diversity. , 2013, The Plant journal : for cell and molecular biology.

[92]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[93]  Thomas Meitinger,et al.  A powerful tool for genome analysis in maize: development and evaluation of the high density 600 k SNP genotyping array , 2014, BMC Genomics.

[94]  S. Salzberg,et al.  Repetitive DNA and next-generation sequencing: computational challenges and solutions , 2012, Nature Reviews Genetics.

[95]  Hiroaki Sakai,et al.  Comprehensive Sequence Analysis of 24,783 Barley Full-Length cDNAs Derived from 12 Clone Libraries1[W][OA] , 2011, Plant Physiology.

[96]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[97]  Siegfried Schittenhelm,et al.  Performance of winter cereals grown on field-stored soil moisture only , 2014 .

[98]  S. Hearne,et al.  Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement , 2013, Molecular Breeding.