High-power blue superluminescent diode for high CRI lighting and high-speed visible light communication.

We demonstrated a high-power (474 mW) blue superluminescent diode (SLD) on c-plane GaN-substrate for speckle-free solid-state lighting (SSL), and high-speed visible light communication (VLC) link. The device, emitting at 442 nm, showed a large spectral bandwidth of 6.5 nm at an optical power of 105 mW. By integrating a YAG-phosphor-plate to the SLD, a CRI of 85.1 and CCT of 3392 K were measured, thus suitable for solid-state lighting. The SLD shows a relatively large 3-dB modulation bandwidth of >400 MHz, while a record high data rate of 1.45 Gigabit-per-second (Gbps) link has been achieved below forward-error correction (FEC) limit under non-return-to-zero on-off keying (NRZ-OOK) modulation scheme. Our results suggest that SLD is a promising alternative for simultaneous speckle-free white lighting and Gbps data communication dual functionalities.

[1]  C. A. Burrus,et al.  A stripe-geometry double-heterostructure amplified-spontaneous-emission (superluminescent) diode , 1973 .

[2]  C. Dimas,et al.  Gain optimization method of a DQW superluminescent diode with broad multi-state emission , 2010, 2010 Photonics Global Conference.

[3]  C. Eichler,et al.  Cyan Superluminescent Light-Emitting Diode Based on InGaN Quantum Wells , 2012 .

[4]  Shuji Nakamura,et al.  Semipolar InGaN quantum-well laser diode with integrated amplifier for visible light communications. , 2018, Optics express.

[5]  Raffaele Rezzonico,et al.  High Power Blue-Violet Superluminescent Light Emitting Diodes with InGaN Quantum Wells , 2010 .

[6]  Harald Haas,et al.  LiFi is a paradigm-shifting 5G technology , 2018, Reviews in Physics.

[7]  P. Perlin,et al.  InAlGaN superluminescent diodes fabricated on patterned substrates: an alternative semiconductor broadband emitter , 2017 .

[8]  A. Yariv,et al.  Superluminescent damping of relaxation resonance in the modulation response of GaAs lasers , 1983 .

[9]  James S. Speck,et al.  m-Plane GaN-Based Blue Superluminescent Diodes Fabricated Using Selective Chemical Wet Etching , 2009 .

[10]  Gerard A. Alphonse,et al.  High-power superluminescent diodes , 1987 .

[11]  S. Denbaars,et al.  Semipolar $({\hbox{20}}\bar{{\hbox{2}}}\bar{{\hbox{1}}})$ InGaN/GaN Light-Emitting Diodes for High-Efficiency Solid-State Lighting , 2013, Journal of Display Technology.

[12]  Marcus Duelk,et al.  Superluminescent light emitting diodes: the best out of two worlds , 2012, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[13]  Richard J. E. Taylor,et al.  Gallium Nitride Superluminescent Light Emitting Diodes for Optical Coherence Tomography Applications , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[14]  Alfred Lell,et al.  Blue Superluminescent Light-Emitting Diodes with Output Power above 100 mW for Picoprojection , 2013 .

[15]  S. Denbaars,et al.  High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth. , 2016, Optics express.

[16]  Shuji Nakamura,et al.  High-brightness semipolar (2021¯) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications. , 2016, Optics letters.

[17]  Erdan Gu,et al.  Modulation bandwidth studies of recombination processes in blue and green InGaN quantum well micro-light-emitting diodes , 2013 .

[18]  Piotr Perlin,et al.  Cavity suppression in nitride based superluminescent diodes , 2012 .

[19]  A. Lell,et al.  Development of AlInGaN based blue–violet lasers on GaN and SiC substrates , 2006 .

[20]  Gerard A. Alphonse,et al.  High-power superluminescent diodes , 1987 .

[21]  Henry Kressel,et al.  The temperature dependence of threshold current for double‐heterojunction lasers , 1979 .

[22]  M. Duelk,et al.  GaN-based superluminescent diodes with long lifetime , 2016, SPIE OPTO.

[23]  M. Duelk,et al.  Recent progress on GaN-based superluminescent light-emitting diodes in the visible range , 2018, OPTO.

[24]  A. Asgari,et al.  A novel theoretical model for broadband blue InGaN/GaN superluminescent light emitting diodes , 2015 .

[25]  Honglei Li,et al.  High Bandwidth Visible Light Communications Based on a Post-Equalization Circuit , 2014, IEEE Photonics Technology Letters.

[26]  S. Denbaars,et al.  4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication. , 2015, Optics express.

[27]  Stephen P. Najda,et al.  Temperature dependence of superluminescence in InGaN-based superluminescent light emitting diode structures , 2010 .

[28]  Adrian Avramescu,et al.  Investigation of long wavelength green InGaN lasers on c‐plane GaN up to 529 nm continuous wave operation , 2011 .

[29]  Takeshi Kamiya,et al.  Recombination lifetime of carriers in GaAs‐GaAlAs quantum wells near room temperature , 1985 .

[30]  Qingquan Liu,et al.  High-Speed Visible Light Communications: Enabling Technologies and State of the Art , 2018 .

[31]  Harald Haas,et al.  A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications , 2017 .

[32]  S. Denbaars,et al.  Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors. , 2017, Optics express.

[33]  J. Fujimoto,et al.  Optical biopsy and imaging using optical coherence tomography , 1995, Nature Medicine.

[34]  G. Eisenstein,et al.  Measurement of the modal reflectivity of an antireflection coating on a superluminescent diode , 1983, IEEE Journal of Quantum Electronics.

[35]  Mohamed-Slim Alouini,et al.  3.2 Gigabit-per-second Visible Light Communication Link with InGaN/GaN MQW Micro-photodetector. , 2018, Optics express.

[36]  Ching-Fuh Lin Superluminescent diodes with angled facet etched by chemically assisted ion beam etching , 1991 .

[37]  James S. Speck,et al.  Semipolar InGaN-based superluminescent diodes for solid-state lighting and visible light communications , 2017, OPTO.

[38]  Hery Susanto Djie,et al.  InGaAs/GaAs Quantum-Dot Superluminescent Diode for Optical Sensor and Imaging , 2007, IEEE Sensors Journal.

[39]  David C. Holzman,et al.  What’s in a Color? The Unique Human Health Effects of Blue Light , 2010, Environmental health perspectives.

[40]  S. Denbaars,et al.  High-Modulation-Efficiency, Integrated Waveguide Modulator–Laser Diode at 448 nm , 2016 .

[41]  Yu-Chieh Chi,et al.  Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication. , 2015, Optics express.

[42]  C. Elvidge,et al.  Limiting the impact of light pollution on human health, environment and stellar visibility. , 2011, Journal of environmental management.

[43]  P. Perlin,et al.  Nitride superluminescent diodes with broadened emission spectrum fabricated using laterally patterned substrate. , 2016, Optics express.

[44]  J. Carlin,et al.  Broadband blue superluminescent light-emitting diodes based on GaN , 2009 .

[45]  Klaus Petermann,et al.  Low-drift fibre gyro using a superluminescent diode , 1981 .

[46]  A. Yariv,et al.  The gain and carrier density in semiconductor lasers under steady-state and transient conditions , 1992 .

[47]  A. Bell On the production and reproduction of sound by light , 1880, American Journal of Science.

[48]  C. Dimas,et al.  Wideband quantum-dash-in-well superluminescent diode at 1.6 /spl mu/m , 2006, IEEE Photonics Technology Letters.

[49]  Hui Yang,et al.  Characteristics of InGaN-based superluminescent diodes with one-sided oblique cavity facet , 2014 .

[50]  Piotr Perlin,et al.  Design and optimization of InGaN superluminescent diodes , 2015 .

[51]  Rajendran Parthiban,et al.  LED Based Indoor Visible Light Communications: State of the Art , 2015, IEEE Communications Surveys & Tutorials.

[52]  P. Wisniewski,et al.  High-Optical-Power InGaN Superluminescent Diodes with “j-shape” Waveguide , 2013 .

[53]  Harald Haas,et al.  A guide to wireless networking by light , 2017 .

[54]  I. White,et al.  High Bandwidth GaN-Based Micro-LEDs for Multi-Gb/s Visible Light Communications , 2016, IEEE Photonics Technology Letters.