Chlorpyrifos and deltamethrin degradation potentials of two Lactobacillus plantarum (Orla-Jensen, 1919) (Lactobacillales: Lactobacillaceae) strains

Bircok toprak bakterisi chlorpyrifos ve deltamethrin gibi sentetik insektisitleri esteraz enzimleriyle ve/veya bunlari karbon ve enerji kaynagi olarak kullanarak parcalayabilmektedir. Bizim bu calismadaki hipotezimiz gida fermantasyonu asamalarinda kullanilan  Lactobacillus plantarum  (Orla-Jensen, 1919) (Lactobacillales: Lactobacillaceae)’un benzer bir insektisit parcalama potansiyelinin gosterilmesidir. Bu calisma,raroa ei  Lactobacillus plantarum ’un iki farkli susunun (LB-1 ve LB-2) asilamadan sonraki 4 gun icinde, iki farkli insektisit parcalama mekanizmasini gostermek amaciyla 2017-2018 yillarinda, Bursa Uludag Universitesi laboratuvarlarinda, in-vitro kosullarda gerceklestirilmistir. Herhangi bir karbon ve enerji kaynagi icermeyen MS ortami ile karsilastirildiginda, chlorpyrifos ve deltamethrin iceren MS ortaminda onemli duzeyde LB-1 gelisimi saptanmistir. Ayrica, bu sus icin onemli duzeyde artan hidroliz aktivitesi de gozlemlenmistir. Bu ozellikler LB-2’de bir miktar daha dusuk bulunmustur. GC-MS cihazi ile yapilan periyodik analizler sonucunda, LB-1 ve LB-2 inokule edilmis MS ortami icinde chlorpyrifos ve deltamethrin’in parcalama oranlari, 3 gun sonra chlorpyrifos icin sirasiyla %96 ve 90, deltamethrin icin %24 ve 53 olarak belirlenmistir. Deltamethrin icin onemli duzeyde bir parcalanma (%86-82) inkubasyondan 10 gun sonra gerceklesmistir. Bu calisma, denemede kullanilan  L. plantarum  suslarinin chlorpyrifos ve deltamethrin parcalama potansiyellerinin oldugunu gostermistir. Ileride bazi meyve sebzelerin fermentasyon sureclerinde kullanimi ve bu suslarin farkli inokulasyon oranlarinda etkinliginin belirlenmesi amaciyla daha fazla calisma yapilmasi gerekmektedir.

[1]  P. B. Devi,et al.  Recent developments on encapsulation of lactic acid bacteria as potential starter culture in fermented foods – a review , 2018 .

[2]  Z. Piotrowska-Seget,et al.  Enhancement of deltamethrin degradation by soil bioaugmentation with two different strains of Serratia marcescens , 2014, International Journal of Environmental Science and Technology.

[3]  S. Šiler-Marinković,et al.  Stability of the pyrethroid pesticide bifenthrin in milled wheat during thermal processing, yeast and lactic acid fermentation, and storage. , 2013, Journal of the science of food and agriculture.

[4]  L. Wackett,et al.  Evaluating Pesticide Degradation in the Environment: Blind Spots and Emerging Opportunities , 2013, Science.

[5]  S. Soliman,et al.  Deltamethrin degradation and effects on soil microbial activity , 2013, Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes.

[6]  Jianjun Luo,et al.  Enhancement of cypermethrin degradation by a coculture of Bacillus cereus ZH-3 and Streptomyces aureus HP-S-01. , 2012, Bioresource technology.

[7]  M. Hu,et al.  Bioremediation of β-cypermethrin and 3-phenoxybenzaldehyde contaminated soils using Streptomyces aureus HP-S-01 , 2012, Applied Microbiology and Biotechnology.

[8]  Xin-huai Zhao,et al.  A brief study on the degradation kinetics of seven organophosphorus pesticides in skimmed milk cultured with Lactobacillus spp. at 42 °C , 2012 .

[9]  Suresh Kumar Dubey,et al.  Kinetic analysis reveals bacterial efficacy for biodegradation of chlorpyrifos and its hydrolyzing metabolite TCP , 2011 .

[10]  Jianjun Luo,et al.  Isolation and characterization of a fungus able to degrade pyrethroids and 3-phenoxybenzaldehyde. , 2011, Bioresource technology.

[11]  Andrew Green,et al.  The Pesticide Properties Database , 2011 .

[12]  Liu Yang,et al.  Biodegradation of fenvalerate and 3-phenoxybenzoic acid by a novel Stenotrophomonas sp. strain ZS-S-01 and its use in bioremediation of contaminated soils , 2011, Applied Microbiology and Biotechnology.

[13]  Liu Yang,et al.  Biodegradation of beta-cypermethrin and 3-phenoxybenzoic acid by a novel Ochrobactrum lupini DG-S-01. , 2011, Journal of hazardous materials.

[14]  Yanbo Zhang,et al.  Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01 , 2011, Applied Microbiology and Biotechnology.

[15]  Ji Joong Cho,et al.  Organophosphorus hydrolase (OpdB) of Lactobacillus brevis WCP902 from kimchi is able to degrade organophosphorus pesticides. , 2010, Journal of agricultural and food chemistry.

[16]  S. Iqbal,et al.  Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1. , 2009, Journal of hazardous materials.

[17]  Z. Piotrowska-Seget,et al.  Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil. , 2009, Chemosphere.

[18]  Ji Joong Cho,et al.  Biodegradation of chlorpyrifos by lactic acid bacteria during kimchi fermentation. , 2009, Journal of agricultural and food chemistry.

[19]  Mohit Kumar,et al.  Biotransformation of chlorpyrifos and bioremediation of contaminated soil , 2008 .

[20]  Simon J. Yu The Toxicology and Biochemistry of Insecticides , 2008 .

[21]  T. Beresford,et al.  Invited review: Advances in starter cultures and cultured foods. , 2007, Journal of dairy science.

[22]  C. Qiao,et al.  Cloning of mpd gene from a chlorpyrifos-degrading bacterium and use of this strain in bioremediation of contaminated soil. , 2006, FEMS microbiology letters.

[23]  Allan Walker,et al.  Microbial degradation of organophosphorus compounds. , 2006, FEMS microbiology reviews.

[24]  Julie Newman,et al.  Degradation of pesticides in nursery recycling pond waters. , 2006, Journal of agricultural and food chemistry.

[25]  B. Pot,et al.  Probiotic potential of Lactobacillus strains isolated from dairy products , 2006 .

[26]  Na Luo,et al.  Molecular cloning, purification, and biochemical characterization of a novel pyrethroid-hydrolyzing esterase from Klebsiella sp. strain ZD112. , 2006, Journal of agricultural and food chemistry.

[27]  B. Lee,et al.  Characterization and Heterologous Gene Expression of a Novel Esterase from Lactobacillus casei CL96 , 2004, Applied and Environmental Microbiology.

[28]  A. Nawab,et al.  Determination of organochlorine pesticides in agricultural soil with special reference to gamma-HCH degradation by Pseudomonas strains. , 2003, Bioresource technology.

[29]  M. Sogorb,et al.  Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. , 2002, Toxicology letters.

[30]  S. Torriani,et al.  Differentiation of Lactobacillus plantarum,L. pentosus, and L. paraplantarum by recA Gene Sequence Analysis and Multiplex PCR Assay with recA Gene-Derived Primers , 2001, Applied and Environmental Microbiology.

[31]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[32]  M. E. Sharpe,et al.  Esterases and other soluble proteins of some lactic acid bacteria. , 1968, Journal of general microbiology.

[33]  M. Rogosa,et al.  A MEDIUM FOR THE CULTIVATION OF LACTOBACILLI , 1960 .

[34]  N. A. Kumral,et al.  Decontamination of insecticides by lactic acid bacteria. , 2013 .

[35]  L. Nadel,et al.  Review of the toxicology of chlorpyrifos with an emphasis on human exposure and neurodevelopment. , 2008, Critical reviews in toxicology.

[36]  J. Baratti,et al.  Characterization of a thermostable esterase activity from the moderate thermophile Bacillus licheniformis. , 1999, Bioscience, biotechnology, and biochemistry.

[37]  T. Oh,et al.  Gene cloning and characterization of thermostable lipase from Bacillus stearothermophilus L1. , 1998, Bioscience, biotechnology, and biochemistry.

[38]  R. Boethling Biodegradation of Xenobiotic Chemicals , 1993 .