Generation of Hot Free Electrons Due to the Interaction between Charge‐Transfer Excitons and Thermalized Free Electrons in Molecular Crystals

The interaction of a free, thermalized electron with a CT exciton (nearest-neighbor hole–electron pair) in an anthracene crystal is discussed theoretically. The rate constant for the annihilation of the CT exciton by the electron, in which an Auger electron is produced in a plane-wave crystal state by the decay of an intermediate excitonic ion state is estimated to be about 10−10 to 10−9 cm3 S−1. Es wird die Wechselwirkung eines freien, thermalisierten Elektrons mit einem CT-Exziton (Elektron–Loch-Paar nachster Nachbarn) in einem Anthrazenkristall theoretisch untersucht. Die Ratenkonstante der Annihilation des CT-Exzitons durch das Elektron, bei der ein Augerelektron in einem Kristallzustand ebener Wellen durch den Zerfall eines Exzitonen-Zwischenzustands erzeugt wird, wird zu etwa 10−10 bis 10−9 cm3 S−1 berechnet.

[1]  G. Klein Production of pairs of singlet excitons and triplet excitons in anthracene crystals , 1983 .

[2]  D. Mattis,et al.  Effect of spin variables and exciton motion on ground-state properties of the "trion" , 1983 .

[3]  G. Klein Photoelectron-photon coincidences in anthracene crystals , 1983 .

[4]  D. Mattis,et al.  Bound exciton and hole: an exactly solvable three-body model in any number of dimensions , 1982 .

[5]  Charles E. Swenberg,et al.  Electronic Processes in Organic Crystals , 1982 .

[6]  G. Gumbs,et al.  Conduction electron-exciton complexes in semiconductor single crystals☆ , 1982 .

[7]  J. Singh Generation of hot and complex charge carriers due to the interaction between excitons and free charge carriers in molecular crystals , 1981 .

[8]  W. Siebrand,et al.  Charge-transfer excitons in anthracene crystals and their role in optical charge carrier generation , 1980 .

[9]  S. Arnold,et al.  Double quantum external photoelectric effect in crystalline tetracene , 1979 .

[10]  H. Bässler,et al.  Laser-induced photoconduction in anthracene single crystals: Evidence for excited charge carriers , 1977 .

[11]  N. Karl,et al.  Absorption spectrum of the tetracene monopositive ion in the anthracene lattice , 1976 .

[12]  H. Baessler,et al.  Hot carrier motion in crystalline anthracene , 1974 .

[13]  M. Trlifaj Nonradiative destruction of triplet excitons by excess electrons in organic crystals , 1973 .

[14]  D. Haarer,et al.  Exciton induced photoemission in anthracene , 1971 .

[15]  M. Pope,et al.  Singlet exciton-trapped carrier interaction in anthracene , 1971 .

[16]  M. Pope,et al.  Photoconductivity and semiconductivity in organic crystals , 1971 .

[17]  Sang‐il Choi,et al.  Exciton States and Optical Spectra in Linear Molecular Crystals , 1970 .

[18]  J. Hernandez,et al.  Optical Absorption by Charge‐Transfer Excitons in Linear Molecular Crystals , 1969 .

[19]  W. Helfrich Destruction of Triplet Excitons in Anthracene by Injected Electrons , 1966 .

[20]  S. Rice,et al.  On the Excess Electron and Hole Band Structures and Carrier Mobility in Naphthalene, Anthracene, and Several Polyphenyls , 1963 .

[21]  R. Merrifield Ionized States in a One‐Dimensional Molecular Crystal , 1961 .

[22]  Rudolph Pariser,et al.  Theory of the Electronic Spectra and Structure of the Polyacenes and of Alternant Hydrocarbons , 1956 .