Some kinds of (∈,∈ ∨ q)-fuzzy filters of BL-algebras

The concepts of (∈,∈ ∨ q)-fuzzy (implicative, positive implicative and fantastic) filters of BL-algebras are introduced and some related properties are investigated. Some characterizations of these generalized fuzzy filters are derived. In particular, we describe the relationships among ordinary fuzzy (implicative, positive implicative and fantastic) filters, (∈,∈∨q)-fuzzy (implicative, positive implicative and fantastic) filters and (∈,∈ ∨ q)-fuzzy (implicative, positive implicative and fantastic) filters of BL-algebras. Finally, we prove that a fuzzy set F on a BL-algebra L is an (∈,∈∨ q)-fuzzy implicative filter of L if and only if it is both (∈,∈∨ q)-fuzzy positive implicative filter and an (∈,∈ ∨ q)-fuzzy fantastic filter.

[1]  Y. Jun,et al.  On (∈, ∈ ∨ q)‐fuzzy filters of R0‐algebras , 2009, Math. Log. Q..

[2]  Jirí Rachunek,et al.  Fuzzy filters and fuzzy prime filters of bounded R , 2008, Inf. Sci..

[3]  Yang Xu,et al.  Computers and Mathematics with Applications Some Types of Generalized Fuzzy Filters of Bl-algebras , 2022 .

[4]  Jianming Zhan,et al.  A new view of fuzzy hypernear-rings , 2008, Inf. Sci..

[5]  Wieslaw A. Dudek,et al.  Filter theory of BL algebras , 2007, Soft Comput..

[6]  Keyun Qin,et al.  Ultra LI-ideals in lattice implication algebras and MTL-algebras , 2007, 0710.3887.

[7]  Yang Xu,et al.  Generalized fuzzy filters of R0-algebras , 2007, Soft Comput..

[8]  Bijan Davvaz,et al.  Redefined fuzzy Hv-submodules and many valued implications , 2007, Inf. Sci..

[9]  Anatolij Dvurecenskij,et al.  Every Linear Pseudo BL-Algebra Admits a State , 2007, Soft Comput..

[10]  Xiao-hong Zhang,et al.  On pseudo-BL algebras and BCC-algebras , 2006, Soft Comput..

[11]  Bijan Davvaz,et al.  (∈, ∈ ∨ q)-fuzzy subnear-rings and ideals , 2006, Soft Comput..

[12]  Zhang Xiao-hong On Fuzzy Filters and Fuzzy Ideals of BL-algebras , 2006 .

[13]  Kaitai Li,et al.  Fuzzy filters of BL-algebras , 2005, Inf. Sci..

[14]  Kaitai Li,et al.  Fuzzy Boolean and positive implicative filters of BL-algebras , 2005, Fuzzy Sets Syst..

[15]  W. Dudek,et al.  On the Transfer Principle in Fuzzy Theory , 2005 .

[16]  Renato A. Lewin,et al.  MV* - Algebras , 2004, Log. J. IGPL.

[17]  J. Rachunek,et al.  Prime spectra of non-commutative generalizations of MV-algebras , 2002 .

[18]  Young Bae Jun,et al.  Ultra LI-ideals in lattice implication algebras , 2002 .

[19]  George Georgescu,et al.  Some classes of pseudo-BL algebras , 2002, Journal of the Australian Mathematical Society.

[20]  A. Dvurečenskij,et al.  On pseudo MV-algebras , 2001, Soft Comput..

[21]  Esko Turunen,et al.  Boolean deductive systems of BL-algebras , 2001, Arch. Math. Log..

[22]  Anatolij Dvurecenskij,et al.  States on Pseudo MV-Algebras , 2001, Stud Logica.

[23]  A. Nola,et al.  Boolean products of BL-algebras , 2000 .

[24]  Sandeep Kumar Bhakat,et al.  (∈, ∈∨q)-fuzzy Normal, Quasinormal and Maximal Subgroups , 2000, Fuzzy Sets Syst..

[25]  Guojun Wang,et al.  On the Logic Foundation of Fuzzy Reasoning , 1999, Inf. Sci..

[26]  E. Turunen BL-algebras of basic fuzzy logic , 1999 .

[27]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[28]  Y. Xu Lattice implication algebras , 1993 .

[29]  Pu Pao-Ming,et al.  Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence , 1980 .

[30]  L. A. ZADEH,et al.  The concept of a linguistic variable and its application to approximate reasoning - I , 1975, Inf. Sci..

[31]  C. Chang,et al.  Algebraic analysis of many valued logics , 1958 .