A Consistent Quantum Ontology

Abstract The (consistent or decoherent) histories interpretation provides a consistent realistic ontology for quantum mechanics, based on two main ideas. First, a logic (system of reasoning) is employed which is compatible with the Hilbert-space structure of quantum mechanics as understood by von Neumann: quantum properties and their negations correspond to subspaces and their orthogonal complements. It employs a special (single framework) syntactical rule to construct meaningful quantum expressions, quite different from the quantum logic of Birkhoff and von Neumann. Second, quantum time development is treated as an inherently stochastic process under all circumstances, not just when measurements take place. The time-dependent Schrodinger equation provides probabilities, not a deterministic time development of the world. The resulting interpretive framework has no measurement problem and can be used to analyze in quantum terms what is going on before, after, and during physical preparation and measurement processes. In particular, appropriate measurements can reveal quantum properties possessed by the measured system before the measurement took place. There are no mysterious superluminal influences: quantum systems satisfy an appropriate form of Einstein locality. This ontology provides a satisfactory foundation for quantum information theory, since it supplies definite answers as to what the information is about. The formalism of classical (Shannon) information theory applies without change in suitable quantum contexts, and this suggests the way in which quantum information theory extends beyond its classical counterpart.

[1]  Gell-Mann,et al.  Classical equations for quantum systems. , 1992, Physical review. D, Particles and fields.

[2]  Y. Aharonov,et al.  Complete description of a quantum system at a given time , 1991 .

[3]  Robert B. Griffiths,et al.  Quantum Locality , 2009, 0908.2914.

[4]  Consistent histories, quantum truth functionals, and hidden variables , 1999, quant-ph/9909049.

[5]  Adrian Kent,et al.  On the consistent histories approach to quantum mechanics , 1996 .

[6]  Quantum Histories , 1998, gr-qc/9809026.

[7]  E. Cavalcanti,et al.  Quantum Paradoxes , 2010 .

[8]  Peter Mittelstaedt The interpretation of quantum mechanics and the measurement process , 1997 .

[9]  P. C. Hohenberg,et al.  An Introduction to Consistent Quantum Theory , 2009, 0909.2359.

[10]  Christopher G. Timpson,et al.  Philosophical Aspects of Quantum Information Theory 1 , 2007 .

[11]  Stephen L. Adler,et al.  Why decoherence has not solved the measurement problem: A Response to P. W. Anderson , 2003 .

[12]  R. Griffiths Consistent Quantum Theory , 2001 .

[13]  C. J. Isham,et al.  Quantum logic and the histories approach to quantum theory , 1993 .

[14]  James B. Hartle,et al.  Quantum Mechanics in the Light of Quantum Cosmology , 2018, 1803.04605.

[15]  I. Stamatescu,et al.  Decoherence and the Appearance of a Classical World in Quantum Theory , 1996 .

[16]  David Wallace,et al.  Philosophy of Quantum Mechanics , 2008 .

[17]  R. Omnes,et al.  Understanding Quantum Mechanics , 2020 .

[18]  J. Neumann Mathematische grundlagen der Quantenmechanik , 1935 .

[19]  Patrick J. Coles,et al.  Information-theoretic treatment of tripartite systems and quantum channels , 2010, 1006.4859.

[20]  G. Ghirardi,et al.  Can the decoherent histories description of reality be considered satisfactory , 1998, gr-qc/9811050.

[21]  Robert B. Griffiths,et al.  Consistent histories and the interpretation of quantum mechanics , 1984 .

[22]  Consistent Quantum Realism: A Reply to Bassi and Ghirardi , 2000, quant-ph/0001093.

[23]  N. Mermin,et al.  The Ithaca interpretation of quantum mechanics , 1996, quant-ph/9609013.

[24]  W. D. Muynck Foundations of Quantum Mechanics, an Empiricist Approach , 2002 .

[25]  Roland Omnès The Interpretation of Quantum Mechanics , 1987 .

[26]  B. D'espagnat Consistent histories and the measurement problem , 1987 .

[27]  Anomalies of weakened decoherence criteria for quantum histories. , 2003, Physical review letters.

[28]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[29]  David Wallace,et al.  The Quantum Measurement Problem: State of Play , 2007, 0712.0149.

[30]  Christopher G Timpson,et al.  Philosophical Aspects of Quantum Information Theory , 2006, quant-ph/0611187.

[31]  Robert B. Griffiths Choice of Consistent Family, and Quantum Incompatibility , 1998 .

[32]  GianCarlo Ghirardi,et al.  Decoherent Histories and Realism , 1999 .

[33]  GianCarlo Ghirardi,et al.  The interpretation of quantum mechanics: where do we stand? , 2009, 0904.0958.

[34]  R. Griffiths EPR, Bell, and quantum locality , 2010, 1007.4281.

[35]  Philosophy of Quantum Information and Entanglement: Information, immaterialism, instrumentalism: Old and new in quantum information , 2010 .

[36]  Erkki J. Brändas,et al.  Decoherence and the Appearance of a Classical World in Quantum Theory : E. Joos, H. D. Zeh, C. Kiefer, D. Giulini, J. Kupsch and I.-O Stamatescu, Springer-Verlag, New York, 2003 , 2004 .

[37]  J. Uffink Time, Chance and Reduction: Irreversibility in stochastic dynamics , 2010 .

[38]  L. Loeb Autobiographical Notes , 2015, Perspectives in biology and medicine.

[39]  A. Kent CONSISTENT SETS YIELD CONTRARY INFERENCES IN QUANTUM THEORY , 1996, gr-qc/9604012.

[40]  Robert B. Griffiths,et al.  Nature and location of quantum information , 2002, quant-ph/0203058.

[41]  R. Frigg A Field Guide to Recent Work on the Foundations of Statistical Mechanics. , 2008, 0804.0399.

[42]  橋本 到 On Everett′s "Relative State"Formulation of Quantum Mechanics , 1987 .

[43]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[44]  C. Fuchs Quantum mechanics as quantum information, mostly , 2003 .

[45]  R. Griffiths Consistent resolution of some relativistic quantum paradoxes , 2002, quant-ph/0207015.

[46]  Simon Saunders,et al.  What is the Problem of Measurement , 1994 .

[47]  W. Zurek Quantum Darwinism , 2009, 0903.5082.

[48]  M. Born Zur Quantenmechanik der Stoßvorgänge , 1926 .

[49]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[50]  M. Schlosshauer Decoherence, the measurement problem, and interpretations of quantum mechanics , 2003, quant-ph/0312059.

[51]  T. Maudlin What Bell proved: A reply to Blaylock , 2010 .

[52]  R. Griffiths,et al.  Quantum-error-correcting codes using qudit graph states , 2007, 0712.1979.

[53]  B. D'espagnat Towards a separable “empirical reality”? , 1990 .

[54]  Roderich Tumulka,et al.  What Is Bohmian Mechanics , 2001, Compendium of Quantum Physics.

[55]  R. Griffiths Channel kets, entangled states, and the location of quantum information (16 pages) , 2004, quant-ph/0409106.

[56]  R. Omnes Are there unsolved problems in the interpretation of quantum mechanics , 1999 .

[57]  Quasiclassical dynamics in a closed quantum system. , 1995, Physical review. A, Atomic, molecular, and optical physics.