A new class of models for computing receptor-ligand binding affinities.

[1]  A. W. Rosenbluth,et al.  MONTE CARLO CALCULATION OF THE AVERAGE EXTENSION OF MOLECULAR CHAINS , 1955 .

[2]  J. Wyman,et al.  THE BINDING POTENTIAL, A NEGLECTED LINKAGE CONCEPT. , 1965, Journal of molecular biology.

[3]  C. Chothia,et al.  Principles of protein–protein recognition , 1975, Nature.

[4]  M. Kröger,et al.  Influence of different levels of 2-thiocytidine on physical and template properties of cytidine--2-thiocytidine copolymers. , 1979, Biochemistry.

[5]  J. E. McQueen,et al.  Energy minimizations of rubredoxin. , 1980, Journal of molecular biology.

[6]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[7]  U. Singh,et al.  A NEW FORCE FIELD FOR MOLECULAR MECHANICAL SIMULATION OF NUCLEIC ACIDS AND PROTEINS , 1984 .

[8]  P. Andrews,et al.  Functional group contributions to drug-receptor interactions. , 1984, Journal of medicinal chemistry.

[9]  H. Berendsen,et al.  A consistent empirical potential for water–protein interactions , 1984 .

[10]  F. Gurd,et al.  pH-dependent processes in proteins. , 1985, CRC critical reviews in biochemistry.

[11]  J. Andrew McCammon,et al.  Dynamics and design of enzymes and inhibitors , 1986 .

[12]  A. D. McLachlan,et al.  Solvation energy in protein folding and binding , 1986, Nature.

[13]  A. Warshel,et al.  Free energy of charges in solvated proteins: microscopic calculations using a reversible charging process. , 1986, Biochemistry.

[14]  P. A. Bash,et al.  Free energy calculations by computer simulation. , 1987, Science.

[15]  B. Honig,et al.  Calculation of the total electrostatic energy of a macromolecular system: Solvation energies, binding energies, and conformational analysis , 1988, Proteins.

[16]  Kenny B. Lipkowitz,et al.  Protocol for determining enantioselective binding of chiral analytes on chiral chromatographic surfaces , 1988 .

[17]  Harold A. Scheraga,et al.  Free energies of hydration of solute molecules. IV: Revised treatment of the hydration shell model , 1988 .

[18]  D. Beveridge,et al.  Free energy via molecular simulation: applications to chemical and biomolecular systems. , 1989, Annual review of biophysics and biophysical chemistry.

[19]  H. Erickson,et al.  Co-operativity in protein-protein association. The structure and stability of the actin filament. , 1989, Journal of molecular biology.

[20]  R. Bruccoleri,et al.  On the attribution of binding energy in antigen-antibody complexes McPC 603, D1.3, and HyHEL-5. , 1989, Biochemistry.

[21]  K. Lipkowitz,et al.  Theoretical studies in molecular recognition: Rebek's cleft , 1989 .

[22]  M. Karplus,et al.  pKa's of ionizable groups in proteins: atomic detail from a continuum electrostatic model. , 1990, Biochemistry.

[23]  W. C. Still,et al.  Semianalytical treatment of solvation for molecular mechanics and dynamics , 1990 .

[24]  S. Freer,et al.  Design of enzyme inhibitors using iterative protein crystallographic analysis. , 1991, Journal of medicinal chemistry.

[25]  Ronald M. Levy,et al.  Gaussian fluctuation formula for electrostatic free‐energy changes in solution , 1991 .

[26]  Kenneth M. Merz,et al.  Determination of pKas of ionizable groups in proteins: The pKa of Glu 7 and 35 in hen egg white lysozyme and Glu 106 in human carbonic anhydrase II , 1991 .

[27]  Jenn-Huei Lii,et al.  The MM3 force field for amides, polypeptides and proteins , 1991 .

[28]  J. Andrew McCammon,et al.  Free energy difference calculations by thermodynamic integration: Difficulties in obtaining a precise value , 1991 .

[29]  M. Lewis,et al.  Calculation of the free energy of association for protein complexes , 1992, Protein science : a publication of the Protein Society.

[30]  Berend Smit,et al.  Novel scheme to study structural and thermal properties of continuously deformable molecules , 1992 .

[31]  Dudley H. Williams,et al.  Partitioning of free energy contributions in the estimation of binding constants : Residual motions and consequences for amide-amide hydrogen bond strengths , 1992 .

[32]  K. Sharp,et al.  Macroscopic models of aqueous solutions : biological and chemical applications , 1993 .

[33]  K. P. Murphy,et al.  Structural energetics of peptide recognition: Angiotensin II/antibody binding , 1993, Proteins.

[34]  C. Sander,et al.  An effective solvation term based on atomic occupancies for use in protein simulations , 1993 .

[35]  D. Theodorou,et al.  A concerted rotation algorithm for atomistic Monte Carlo simulation of polymer melts and glasses , 1993 .

[36]  N. Allewell,et al.  Multigrid solution of the nonlinear Poisson-Boltzmann equation and calculation of titration curves. , 1993, Biophysical journal.

[37]  K. Sharp,et al.  On the calculation of pKas in proteins , 1993, Proteins.

[38]  Peter A. Kollman,et al.  FREE ENERGY CALCULATIONS : APPLICATIONS TO CHEMICAL AND BIOCHEMICAL PHENOMENA , 1993 .

[39]  M. Gilson Multiple‐site titration and molecular modeling: Two rapid methods for computing energies and forces for ionizable groups in proteins , 1993, Proteins.

[40]  Norman L. Allinger,et al.  Molecular mechanics parameters , 1994 .

[41]  PatrickY.-S. Lam,et al.  Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors. , 1994, Science.

[42]  Malcolm E. Davis,et al.  The inducible multipole solvation model: A new model for solvation effects on solute electrostatics , 1994 .

[43]  Ming-Jing Hwang,et al.  Derivation of Class II Force Fields. 2. Derivation and Characterization of a Class II Force Field, CFF93, for the Alkyl Functional Group and Alkane Molecules , 1994 .

[44]  D. Beglov,et al.  Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations , 1994 .

[45]  Arieh Warshel,et al.  Effective Methods for Estimation of Binding Energies in Computer‐Aided Drug Design , 1994 .

[46]  M. Gilson,et al.  Prediction of pH-dependent properties of proteins. , 1994, Journal of molecular biology.

[47]  Hans-Joachim Böhm,et al.  The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure , 1994, J. Comput. Aided Mol. Des..

[48]  Ming-Jing Hwang,et al.  Derivation of Class II Force Fields. III. Characterization of a Quantum Force Field for Alkanes , 1994 .

[49]  Ming-Jing Hwang,et al.  Derivation of class II force fields. I. Methodology and quantum force field for the alkyl functional group and alkane molecules , 1994, J. Comput. Chem..

[50]  Alexander D. MacKerell,et al.  pH dependence of binding reactions from free energy simulations and macroscopic continuum electrostatic calculations: application to 2'GMP/3'GMP binding to ribonuclease T1 and implications for catalysis. , 1995, Journal of molecular biology.

[51]  Alexis T. Bell,et al.  Sorption Thermodynamics, Siting, and Conformation of Long n-Alkanes in Silicalite As Predicted by Configurational-Bias Monte Carlo Integration , 1995 .

[52]  E. Purisima,et al.  Calculation of relative binding free energies and configurational entropies: a structural and thermodynamic analysis of the nature of non-polar binding of thrombin inhibitors based on hirudin55-65. , 1995, Journal of molecular biology.

[53]  Ajay,et al.  Computational methods to predict binding free energy in ligand-receptor complexes. , 1995, Journal of medicinal chemistry.

[54]  B. Matthews,et al.  Energetic origins of specificity of ligand binding in an interior nonpolar cavity of T4 lysozyme. , 1995, Biochemistry.

[55]  Freeman J. Dyson,et al.  The same and not the same , 1995 .

[56]  Thomas A. Halgren,et al.  Merck molecular force field. IV. conformational energies and geometries for MMFF94 , 1996 .

[57]  Michael W. Deem,et al.  A configurational bias Monte Carlo method for linear and cyclic peptides , 1996, cond-mat/9709330.

[58]  S. Subramaniam,et al.  Explicit solvent models in protein pKa calculations. , 1996, Biophysical journal.

[59]  Thomas A. Halgren,et al.  Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94 , 1996, J. Comput. Chem..

[60]  E. Mehler Self-Consistent, Free Energy Based Approximation To Calculate pH Dependent Electrostatic Effects in Proteins , 1996 .

[61]  S Vajda,et al.  Prediction of protein complexes using empirical free energy functions , 1996, Protein science : a publication of the Protein Society.

[62]  T. Halgren Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions , 1996 .

[63]  Jenn-Huei Lii,et al.  An improved force field (MM4) for saturated hydrocarbons , 1996, J. Comput. Chem..

[64]  Enrico O. Purisima,et al.  Analysis of thermodynamic determinants in helix propensities of nonpolar amino acids through a novel free energy calculation , 1996 .

[65]  Rebecca C. Wade,et al.  Improving the Continuum Dielectric Approach to Calculating pKas of Ionizable Groups in Proteins , 1996 .

[66]  T. Halgren,et al.  Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data, and empirical rules , 1996 .

[67]  T. Halgren Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..

[68]  M. Gilson Modeling protonation equilibria in biomolecules , 1997 .

[69]  Michael K. Gilson,et al.  ''Mining minima'': Direct computation of conformational free energy , 1997 .

[70]  J. Briggs,et al.  Structure-based drug design: computational advances. , 1997, Annual review of pharmacology and toxicology.

[71]  M. Gilson,et al.  The statistical-thermodynamic basis for computation of binding affinities: a critical review. , 1997, Biophysical journal.