Nonparametric Identification in Dynamic Nonseparable Panel Data Models

We consider the identification of covariate-conditioned and average partial effects in dynamic nonseparable panel data structures. We demonstrate that a control function approach is sufficient to identify the effects of interest, and we show how the panel structure may be helpful in finding control functions. We also provide new results for the nonparametric binary dependent variable case with a lagged dependent variable.

[1]  Rosa L. Matzkin,et al.  Cross Section and Panel Data Estimators for Nonseparable Models with Endogenous Regressors , 2005 .

[2]  James J. Heckman,et al.  A Life Cycle Model of Female Labour Supply , 1980 .

[3]  Bo E. Honoré,et al.  Panel Data Discrete Choice Models with Lagged Dependent Variables , 2000 .

[4]  James J. Heckman,et al.  Econometric Evaluation of Social Programs, Part I: Causal Models, Structural Models and Econometric Policy Evaluation , 2007 .

[5]  Yuya Sasaki,et al.  On the role of time in nonseparable panel data models , 2011 .

[6]  W. Newey,et al.  Identification and estimation of marginal effects in nonlinear panel models , 2008 .

[7]  R. M. Dudley,et al.  Real Analysis and Probability , 1989 .

[8]  H. White Retrospective Estimation of Causal E¤ects Through Time , 2007 .

[9]  Christian Hansen,et al.  Identification of Marginal Effects in a Nonparametric Correlated Random Effects Model , 2006 .

[10]  H. White,et al.  Nonparametric Identification in Nonseparable Panel Data Models with Generalized Fixed Effects , 2009 .

[11]  G. Chamberlain Multivariate regression models for panel data , 1982 .

[12]  Qi Li,et al.  Efficient Estimation of Average Treatment Effects with Mixed Categorical and Continuous Data , 2009 .

[13]  Jianqing Fan Design-adaptive Nonparametric Regression , 1992 .

[14]  H. White,et al.  Identification and Identification Failure for Treatment Effects Using Structural Systems , 2013 .

[15]  Jeffrey S. Racine,et al.  CROSS-VALIDATED LOCAL LINEAR NONPARAMETRIC REGRESSION , 2004 .

[16]  Bryan S. Graham,et al.  Identification and Estimation of &Apos;Irregular&Apos; Correlated Random Coefficient Models , 2008 .

[17]  J. Heckman,et al.  Making the Most out of Programme Evaluations and Social Experiments: Accounting for Heterogeneity in Programme Impacts , 1997 .

[18]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[19]  Enno Mammen,et al.  Identification of marginal effects in nonseparable models without monotonicity , 2007 .

[20]  G. Imbens,et al.  Identification and Estimation of Triangular Simultaneous Equations Models without Additivity , 2002 .

[21]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[22]  Clifford M. Hurvich,et al.  Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion , 1998 .

[23]  Z. Griliches,et al.  Econometric Models for Count Data with an Application to the Patents-R&D Relationship , 1984 .

[24]  Susanne M. Schennach,et al.  Local indirect least squares and average marginal effects in nonseparable structural systems , 2012 .

[25]  W. Newey,et al.  Kernel Estimation of Partial Means and a General Variance Estimator , 1994, Econometric Theory.

[26]  Manuel Arellano,et al.  Discrete Choices with Panel Data , 2001 .

[27]  Gary Chamberlain,et al.  Binary Response Models for Panel Data: Identification and Information , 2010 .

[28]  Stefan Hoderlein How many consumers are rational , 2009 .

[29]  Jianqing Fan,et al.  Efficient Estimation of Conditional Variance Functions in Stochastic Regression , 1998 .

[30]  J. Wooldridge Fixed-Effects and Related Estimators for Correlated Random-Coefficient and Treatment-Effect Panel Data Models , 2005, Review of Economics and Statistics.

[31]  Raquel Carrasco,et al.  Binary choice panel data models with predetermined variables , 2003 .

[32]  Qi Li,et al.  Nonparametric Econometrics: Theory and Practice , 2006 .

[33]  A. Dawid Conditional Independence in Statistical Theory , 1979 .