Probing eukaryotic cell mechanics via mesoscopic simulations
暂无分享,去创建一个
Chwee Teck Lim | Igor Pivkin | Kirill Lykov | Yasaman Nematbakhsh | Menglin Shang | C. Lim | I. Pivkin | Menglin Shang | Yasaman Nematbakhsh | K. Lykov
[1] Chunning Ji,et al. Large scale simulation of red blood cell aggregation in shear flows. , 2013, Journal of biomechanics.
[2] C. Sussman,et al. Nuclear Structure, Organization, and Oncogenesis , 2011, Journal of gastrointestinal cancer.
[3] Roland Zengerle,et al. Leukocyte enrichment based on a modified pinched flow fractionation approach , 2013 .
[4] Johannes E. Schindelin,et al. The ImageJ ecosystem: An open platform for biomedical image analysis , 2015, Molecular reproduction and development.
[5] Roger D Kamm,et al. Measuring molecular rupture forces between single actin filaments and actin-binding proteins , 2008, Proceedings of the National Academy of Sciences.
[6] T. Krüger,et al. Breakdown of deterministic lateral displacement efficiency for non-dilute suspensions: A numerical study. , 2015, Medical engineering & physics.
[7] Rashid Bashir,et al. Biophysical properties of human breast cancer cells measured using silicon MEMS resonators and atomic force microscopy. , 2015, Lab on a chip.
[8] George E. Karniadakis,et al. Inflow/Outflow Boundary Conditions for Particle-Based Blood Flow Simulations: Application to Arterial Bifurcations and Trees , 2015, PLoS Comput. Biol..
[9] Alan Hall,et al. The cytoskeleton and cancer , 2009, Cancer and Metastasis Reviews.
[10] George Em Karniadakis,et al. Single-particle hydrodynamics in DPD: A new formulation , 2008 .
[11] George Em Karniadakis,et al. Quantifying the rheological and hemodynamic characteristics of sickle cell anemia. , 2012, Biophysical journal.
[12] George Em Karniadakis,et al. Accurate coarse-grained modeling of red blood cells. , 2008, Physical review letters.
[13] George E Karniadakis,et al. Probing vasoocclusion phenomena in sickle cell anemia via mesoscopic simulations , 2013, Proceedings of the National Academy of Sciences.
[14] Na Zhang,et al. A multiple time stepping algorithm for efficient multiscale modeling of platelets flowing in blood plasma , 2015, J. Comput. Phys..
[15] G. Karniadakis,et al. A new method to impose no-slip boundary conditions in dissipative particle dynamics , 2005 .
[16] Massimo Bernaschi,et al. The in-silico lab-on-a-chip: petascale and high-throughput simulations of microfluidics at cell resolution , 2015, SC15: International Conference for High Performance Computing, Networking, Storage and Analysis.
[17] I. Pivkin,et al. A polarizable coarse-grained water model for dissipative particle dynamics. , 2014, The Journal of chemical physics.
[18] Ben Fabry,et al. Linear and Nonlinear Rheology of Living Cells , 2011 .
[19] O. Kim,et al. Three-dimensional multi-scale model of deformable platelets adhesion to vessel wall in blood flow , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[20] Shigeo Wada,et al. Computational studies on strain transmission from a collagen gel construct to a cell and its internal cytoskeletal filaments , 2015, Comput. Biol. Medicine.
[21] Peter V Coveney,et al. Deformability-based red blood cell separation in deterministic lateral displacement devices-A simulation study. , 2014, Biomicrofluidics.
[22] Hongshen Ma,et al. Microfluidic analysis of red blood cell deformability. , 2014, Journal of biomechanics.
[23] He Li,et al. Erythrocyte membrane model with explicit description of the lipid bilayer and the spectrin network. , 2014, Biophysical journal.
[24] Subra Suresh,et al. Biomechanics of red blood cells in human spleen and consequences for physiology and disease , 2016, Proceedings of the National Academy of Sciences.
[25] Dino Di Carlo,et al. Hydrodynamic stretching of single cells for large population mechanical phenotyping , 2012, Proceedings of the National Academy of Sciences.
[26] Español,et al. Hydrodynamics from dissipative particle dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[27] Nus Graduate. Cell biomechanics and its applications in human disease diagnosis , 2015 .
[28] Dmitry A. Fedosov,et al. Multiscale Modeling of Blood Flow and Soft Matter , 2010 .
[29] Subra Suresh,et al. Lipid bilayer and cytoskeletal interactions in a red blood cell , 2013, Proceedings of the National Academy of Sciences.
[30] D. Talaga,et al. DPD Simulation of Protein Conformations: From α-Helices to β-Structures. , 2012, The journal of physical chemistry letters.
[31] Teng Yong Ng,et al. Simulating flow of DNA suspension using dissipative particle dynamics , 2006 .
[32] J. Koelman,et al. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .
[33] P. Richardson,et al. Effect of red blood cells on platelet aggregation , 2009, IEEE Engineering in Medicine and Biology Magazine.
[34] Reinhard Lipowsky,et al. Dissipative particle dynamics simulations of polymersomes. , 2005, The journal of physical chemistry. B.
[35] Toru Hyakutake,et al. Numerical simulation of red blood cell distributions in three-dimensional microvascular bifurcations. , 2015, Microvascular research.
[36] Roger D. Kamm,et al. Computational Analysis of a Cross-linked Actin-like Network , 2009 .
[37] J. Lammerding,et al. Mechanical properties of the cell nucleus and the effect of emerin deficiency. , 2006, Biophysical journal.
[38] Fei Liu,et al. Analyses of the cell mechanical damage during microinjection. , 2015, Soft matter.
[39] D. Alcorta,et al. Cytoskeletal F-actin patterns quantitated with fluorescein isothiocyanate-phalloidin in normal and transformed cells. , 1980, Proceedings of the National Academy of Sciences of the United States of America.
[40] H. Noguchi,et al. Shape transitions of fluid vesicles and red blood cells in capillary flows. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[41] G. Karniadakis,et al. Shape Transformations of Membrane Vesicles from Amphiphilic Triblock Copolymers: A Dissipative Particle Dynamics Simulation Study , 2009 .
[42] Mario Markus,et al. Multipeaked probability distributions of recurrence times. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[43] R M Nerem,et al. The application of a homogeneous half-space model in the analysis of endothelial cell micropipette measurements. , 1988, Journal of biomechanical engineering.
[44] Yohsuke Imai,et al. Modeling of hemodynamics arising from malaria infection. , 2010, Journal of biomechanics.
[45] Aleksander S Popel,et al. Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method. , 2008, Journal of biomechanics.
[46] Roger D. Kamm,et al. Dynamic Mechanisms of Cell Rigidity Sensing: Insights from a Computational Model of Actomyosin Networks , 2012, PloS one.
[47] H. Lodish. Molecular Cell Biology , 1986 .
[48] P. B. Warren,et al. DISSIPATIVE PARTICLE DYNAMICS : BRIDGING THE GAP BETWEEN ATOMISTIC AND MESOSCOPIC SIMULATION , 1997 .
[49] Cyrus K. Aidun,et al. Parallel performance of a lattice-Boltzmann/finite element cellular blood flow solver on the IBM Blue Gene/P architecture , 2010, Comput. Phys. Commun..
[50] G. Karniadakis,et al. Controlling density fluctuations in wall-bounded dissipative particle dynamics systems. , 2006, Physical review letters.
[51] R. Kamm,et al. Multiscale impact of nucleotides and cations on the conformational equilibrium, elasticity and rheology of actin filaments and crosslinked networks , 2015, Biomechanics and Modeling in Mechanobiology.
[52] Subra Suresh,et al. A microfabricated deformability-based flow cytometer with application to malaria. , 2011, Lab on a chip.
[53] G. Karniadakis,et al. Combined Simulation and Experimental Study of Large Deformation of Red Blood Cells in Microfluidic Systems , 2010, Annals of Biomedical Engineering.
[54] Alexander Alexeev,et al. Mesoscale modelling of environmentally responsive hydrogels: emerging applications. , 2015, Chemical communications.
[55] Craig A. Simmons,et al. Integrative Mechanobiology: Micro- and Nano- Techniques in Cell Mechanobiology , 2015 .
[56] D. Weitz,et al. Elastic Behavior of Cross-Linked and Bundled Actin Networks , 2004, Science.
[57] Ed Munro,et al. Determinants of fluidlike behavior and effective viscosity in cross-linked actin networks. , 2012, Biophysical journal.
[58] Thomas D Pollard,et al. Real-time measurements of actin filament polymerization by total internal reflection fluorescence microscopy. , 2005, Biophysical journal.
[59] Eva M. Wojcik,et al. Follicular neoplasm of the thyroid—vanishing cytologic diagnosis? , 2007, Diagnostic cytopathology.
[60] Milica Radisic,et al. In situ mechanical characterization of the cell nucleus by atomic force microscopy. , 2014, ACS nano.
[61] Françoise Brochard-Wyart,et al. Aspiration , 2019, Differential Diagnosis of Cardiopulmonary Disease.
[62] S. Manalis,et al. Deformability of Tumor Cells versus Blood Cells , 2015, Scientific Reports.
[63] K. Chiam,et al. A three-dimensional random network model of the cytoskeleton and its role in mechanotransduction and nucleus deformation , 2012, Biomechanics and modeling in mechanobiology.
[64] I. Pivkin,et al. A polarizable coarse-grained protein model for dissipative particle dynamics. , 2015, Physical chemistry chemical physics : PCCP.
[65] Sanjay Kumar,et al. Mechanics, malignancy, and metastasis: The force journey of a tumor cell , 2009, Cancer and Metastasis Reviews.
[66] He Li,et al. Two-component coarse-grained molecular-dynamics model for the human erythrocyte membrane. , 2012, Biophysical journal.
[67] I. Pivkin,et al. Hydrodynamic effects on flow-induced polymer translocation through a microfluidic channel , 2013 .
[68] D. Tildesley,et al. The compression of polymer brushes under shear: the friction coefficient as a function of compression, shear rate and the properties of the solvent , 2005 .
[69] C. Lim,et al. Biomechanics approaches to studying human diseases. , 2007, Trends in biotechnology.
[70] Pep Español,et al. Dissipative Particle Dynamics , 2005 .
[71] Stefan Schinkinger,et al. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. , 2005, Biophysical journal.
[72] Roger D. Kamm,et al. Computational Analysis of Viscoelastic Properties of Crosslinked Actin Networks , 2009, PLoS Comput. Biol..
[73] J. Lammerding,et al. Nuclear mechanics in cancer. , 2014, Advances in experimental medicine and biology.
[74] R M Nerem,et al. Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties. , 1990, Journal of biomechanical engineering.
[75] S. Suresh,et al. Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. , 2005, Biophysical journal.
[76] Markus Gusenbauer,et al. A tunable cancer cell filter using magnetic beads: cellular and fluid dynamic simulations , 2011, ArXiv.
[77] P. Koumoutsakos,et al. The Fluid Mechanics of Cancer and Its Therapy , 2013 .
[78] G. I. Bell. Models for the specific adhesion of cells to cells. , 1978, Science.
[79] P. Theodoropoulos,et al. Differential nuclear shape dynamics of invasive andnon-invasive breast cancer cells are associated with actin cytoskeleton organization and stability. , 2014, Biochemistry and cell biology = Biochimie et biologie cellulaire.
[80] M. Dupin,et al. Modeling the flow of dense suspensions of deformable particles in three dimensions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[81] Dierk Raabe,et al. Crossover from tumbling to tank-treading-like motion in dense simulated suspensions of red blood cells. , 2013, Soft matter.