Discrete Differential Evolution for Text Summarization

The paper proposes a modified version of Differential Evolution (DE) algorithm and optimization criterion function for extractive text summarization applications. Cosine Similarity measure has been used to cluster similar sentences based on a proposed criterion function designed for the text summarization problem, and important sentences from each cluster are selected to generate a summary of the document. The modified Differential Evolution model ensures integer state values and hence expedites the optimization as compared to conventional DE approach. Experiments showed a 95.5% improvement in time in the Discrete DE approach over the conventional DE approach, while the precision and recall of extracted summaries remained comparable in all cases.

[1]  Ramiz M. Aliguliyev A Novel Partitioning-Based Clustering Method and Generic Document Summarization , 2006, 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Workshops.

[2]  Amit Konar,et al.  Document Clustering Using Differential Evolution , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[3]  Hua Li,et al.  Document Summarization Using Conditional Random Fields , 2007, IJCAI.

[4]  Vincent Kanade,et al.  Clustering Algorithms , 2021, Wireless RF Energy Transfer in the Massive IoT Era.

[5]  Ramiz M. Aliguliyev,et al.  A new sentence similarity measure and sentence based extractive technique for automatic text summarization , 2009, Expert Syst. Appl..

[6]  Thomas E. Potok,et al.  Document clustering using particle swarm optimization , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[7]  Wei-Pang Yang,et al.  Text summarization using a trainable summarizer and latent semantic analysis , 2005, Inf. Process. Manag..

[8]  Vijay V. Raghavan,et al.  A clustering strategy based on a formalism of the reproductive process in natural systems , 1979, SIGIR '79.

[9]  Patrick Pantel,et al.  From Frequency to Meaning: Vector Space Models of Semantics , 2010, J. Artif. Intell. Res..

[10]  E. Malthouse,et al.  Handbook of Data Mining and Knowledge Discovery, by Klösgen and Zytkow: Journal of Marketing Research , 2003 .

[11]  B. Achiriloaie,et al.  VI REFERENCES , 1961 .

[12]  Rasim M. Alguliyev,et al.  Evolutionary Algorithm for Extractive Text Summarization , 2009, Intell. Inf. Manag..

[13]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[14]  Gareth Jones,et al.  Non-hierarchic document clustering using a genetic algorithm , 1995, Information Research.

[15]  Amit Konar,et al.  Two improved differential evolution schemes for faster global search , 2005, GECCO '05.

[16]  M AliguliyevRamiz Clustering of document collection - A weighting approach , 2009 .

[17]  Dragomir R. Radev,et al.  Centroid-based summarization of multiple documents , 2004, Inf. Process. Manag..

[18]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[19]  Dragomir R. Radev,et al.  Introduction to the Special Issue on Summarization , 2002, CL.

[20]  Paul M. B. Vitányi,et al.  The Google Similarity Distance , 2004, IEEE Transactions on Knowledge and Data Engineering.

[21]  Inderjeet Mani,et al.  The Challenges of Automatic Summarization , 2000, Computer.

[22]  Rasim M. Alguliev,et al.  Automatic Text Documents Summarization through Sentences Clustering , 2008 .

[23]  Xin Liu,et al.  Generic text summarization using relevance measure and latent semantic analysis , 2001, SIGIR '01.

[24]  Xiaojun Wan,et al.  A novel document similarity measure based on earth mover's distance , 2007, Inf. Sci..

[25]  Ramiz M. Aliguliyev,et al.  CLUSTERING TECHNIQUES AND DISCRETE PARTICLE SWARM OPTIMIZATION ALGORITHM FOR MULTI‐DOCUMENT SUMMARIZATION , 2010, Comput. Intell..

[26]  Dragomir R. Radev,et al.  LexRank: Graph-based Lexical Centrality as Salience in Text Summarization , 2004, J. Artif. Intell. Res..

[27]  Vijay V. Raghavan,et al.  A clustering strategy based on a formalism of the reproductive process in natural systems , 1979, SIGIR 1979.