Metal-catalyzed transesterification for healing and assembling of thermosets.

Catalytic control of bond exchange reactions enables healing of cross-linked polymer materials under a wide range of conditions. The healing capability at high temperatures is demonstrated for epoxy-acid and epoxy-anhydride thermoset networks in the presence of transesterification catalysts. At lower temperatures, the exchange reactions are very sluggish, and the materials have properties of classical epoxy thermosets. Studies of model molecules confirmed that the healing kinetics is controlled by the transesterification reaction rate. The possibility of varying the catalyst concentration brings control and flexibility of welding and assembling of epoxy thermosets that do not exist for thermoplastics.

[1]  T. J. McCarthy,et al.  A surprise from 1954: siloxane equilibration is a simple, robust, and obvious polymer self-healing mechanism. , 2012, Journal of the American Chemical Society.

[2]  S. Nutt,et al.  A Thermally Re-mendable Cross-Linked Polymeric Material , 2002, Science.

[3]  Krzysztof Matyjaszewski,et al.  Repeatable photoinduced self-healing of covalently cross-linked polymers through reshuffling of trithiocarbonate units. , 2011, Angewandte Chemie.

[4]  C. A. May,et al.  Epoxy Resins: Chemistry and Technology , 1973 .

[5]  J. Economy,et al.  Aromatic copolyester thermosets: High temperature adhesive properties , 1997 .

[6]  J. Economy,et al.  Novel High-Temperature Aromatic Copolyester Thermosets: Synthesis, Characterization, and Physical Properties , 1996 .

[7]  H. Otsuka,et al.  Dynamic covalent polymers: Reorganizable polymers with dynamic covalent bonds , 2009 .

[8]  A. Tobolsky,et al.  A New Approach to the Theory of Relaxing Polymeric Media , 1946 .

[9]  F. Tournilhac,et al.  Epoxy‐based networks combining chemical and supramolecular hydrogen‐bonding crosslinks , 2010 .

[10]  J. Pascault,et al.  Epoxy polymers : new materials and innovations , 2010 .

[11]  Brian J. Adzima,et al.  Rheological and chemical analysis of reverse gelation in a covalently crosslinked Diels-Alder polymer network. , 2008, Macromolecules.

[12]  R. Prud’homme,et al.  The adhesion of amorphous polystyrene surfaces below Tg , 2003 .

[13]  M. Urban,et al.  Self-Repairing Oxetane-Substituted Chitosan Polyurethane Networks , 2009, Science.

[14]  M. Picci,et al.  Catalysis of the epoxy-carboxyl reaction , 2002 .

[15]  G. Palmese,et al.  Crack‐healing behavior of epoxy–amine thermosets , 2009 .

[16]  G. Stevens Cure kinetics of a high epoxide/hydroxyl group‐ratio bisphenol a epoxy resin—anhydride system by infrared absorption spectroscopy , 1981 .

[17]  P. Irwin,et al.  Acid/epoxy reaction catalyst screening for low temperature (120 °C) powder coatings , 2005 .

[18]  T. Nagamura,et al.  Relation between the adhesion strength and interfacial width for symmetric polystyrene bilayers , 2006 .

[19]  Jean-Marie Lehn,et al.  Dynamers: dynamic molecular and supramolecular polymers , 2005 .

[20]  L. Matějka,et al.  Curing epoxy resins with anhydrides. Model reactions and reaction mechanism , 1983 .

[21]  Brian J. Adzima,et al.  Covalent Adaptable Networks (CANs): A Unique Paradigm in Crosslinked Polymers. , 2010, Macromolecules.

[22]  L. Leibler,et al.  Imidazole-promoted acceleration of crosslinking in epoxidized natural rubber/dicarboxylic acid blends , 2011 .

[23]  H. Otsuka,et al.  Polymer scrambling: macromolecular radical crossover reaction between the main chains of alkoxyamine-based dynamic covalent polymers. , 2003, Journal of the American Chemical Society.

[24]  A. Mauri,et al.  Kinetic Model for Gelation in the Diepoxide−Cyclic Anhydride Copolymerization Initiated by Tertiary Amines , 1997 .

[25]  Fred Wudl,et al.  Synthesis and Characterization of a Single-Component Thermally Remendable Polymer Network: Staudinger and Stille Revisited , 2008 .

[26]  Ludwik Leibler,et al.  Silica-Like Malleable Materials from Permanent Organic Networks , 2011, Science.

[27]  Masayuki Yamaguchi,et al.  Self-repairing property of polymer network with dangling chains , 2007 .

[28]  Guohua Deng,et al.  Covalent cross-linked polymer gels with reversible sol-gel transition and self-healing properties , 2010 .

[29]  J. Economy,et al.  Nature of adhesive bonding via interchain transesterification reactions (ITR) , 1998 .

[30]  Youchun Zhang,et al.  Thermally Self-Healing Polymeric Materials : The Next Step to Recycling Thermoset Polymers? , 2009 .

[31]  J. Lehn,et al.  Dynamers: polyacylhydrazone reversible covalent polymers, component exchange, and constitutional diversity. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[32]  C. Angell,et al.  Formation of Glasses from Liquids and Biopolymers , 1995, Science.

[33]  A. Semenov,et al.  Thermoreversible Gelation in Solutions of Associating Polymers. 2. Linear Dynamics , 1998 .

[34]  L. Leibler,et al.  Dynamics of reversible networks , 1991 .

[35]  Simon A. Hayes,et al.  A self-healing thermosetting composite material , 2007 .

[36]  Amy M. Peterson,et al.  Investigation of interpenetrating polymer networks for self-healing applications , 2012 .

[37]  J. Outwater,et al.  On the Fracture Energy, Rehealing Velocity and Refracture Energy of Cast Epoxy Resin , 1969 .

[38]  P. Oyanguren,et al.  Epoxies Modified by Palmitic Acid: From Hot‐Melt Adhesives to Plasticized Networks , 2005 .

[39]  P. Mather,et al.  A thermoplastic/thermoset blend exhibiting thermal mending and reversible adhesion. , 2009, ACS applied materials & interfaces.

[40]  K. Matyjaszewski,et al.  Responsive Gels Based on a Dynamic Covalent Trithiocarbonate Cross-Linker , 2010 .

[41]  A. Mauri,et al.  The effect of epoxy excess on the kinetics of an epoxy–anhydride system , 2002 .

[42]  L. Matějka,et al.  Network formation involving epoxide and carboxyl groups , 1982 .

[43]  B. Fox,et al.  Adhesion of polymers. , 2009 .

[44]  L. Leibler,et al.  Imidazole-accelerated crosslinking of epoxidized natural rubber by dicarboxylic acids: a mechanistic investigation using NMR spectroscopy , 2012 .

[45]  C. Bowman,et al.  Stress Relaxation by Addition-Fragmentation Chain Transfer in Highly Crosslinked Thiol-Yne Networks. , 2010, Macromolecules.

[46]  Bert Klumperman,et al.  Self-Healing Materials Based on Disulfide Links , 2011 .

[47]  I. Mondragon,et al.  Polymer networks derived from the anhydride curing of tetraepoxides , 1997 .

[48]  Stuart J Rowan,et al.  Dynamic covalent chemistry. , 2002, Angewandte Chemie.

[49]  Sabine Cantournet,et al.  Activation and deactivation of self-healing in supramolecular rubbers , 2012 .

[50]  C. Bowman,et al.  Photoinduced Plasticity in Cross-Linked Polymers , 2005, Science.

[51]  Yoshifumi Amamoto,et al.  Self-healing of chemical gels cross-linked by diarylbibenzofuranone-based trigger-free dynamic covalent bonds at room temperature. , 2012, Angewandte Chemie.

[52]  S. Rowan,et al.  Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. , 2011, Nature materials.