Rational Krylov: A Practical Algorithm for Large Sparse Nonsymmetric Matrix Pencils

The rational Krylov algorithm computes eigenvalues and eigenvectors of a regular not necessarily symmetric matrix pencil. It is a generalization of the shifted and inverted Arnoldi algorithm, where several factorizations with different shifts are used in one run. It computes an orthogonal basis and a small Hessenberg pencil. The eigensolution of the Hessenberg pencil approximates the solution of the original pencil. Different types of Ritz values and harmonic Ritz values are described and compared. Periodical purging of uninteresting directions reduces the size of the basis and makes it possible to compute many linearly independent eigenvectors and principal vectors of pencils with multiple eigenvalues. Relations to iterative methods are established. Results are reported for two large test examples. One is a symmetric pencil coming from a finite element approximation of a membrane; the other is a nonsymmetric matrix modeling an idealized aircraft stability problem.

[1]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[2]  G. Stewart,et al.  Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization , 1976 .

[3]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[4]  Y. Saad Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices , 1980 .

[5]  Axel Ruhe,et al.  The spectral transformation Lánczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems , 1980 .

[6]  Axel Ruhe The two-sided arnoldi algorithm for nonsymmetric eigenvalue problems , 1983 .

[7]  Axel Ruhe Rational Krylov sequence methods for eigenvalue computation , 1984 .

[8]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[9]  Mark T. Jones,et al.  Lanz: Software Solving the Large Sparse Symmetric Generalized Eigenproblem , 1990 .

[10]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[11]  John R. Gilbert,et al.  Sparse Matrices in MATLAB: Design and Implementation , 1992, SIAM J. Matrix Anal. Appl..

[12]  B. Parlett,et al.  Forward Instability of Tridiagonal QR , 1993, SIAM J. Matrix Anal. Appl..

[13]  Axel Ruhe Rational Krylov algorithms for nonsymmetric eigenvalue problems. II. matrix pairs , 1994 .

[14]  J. G. Lewis,et al.  A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems , 1994, SIAM J. Matrix Anal. Appl..

[15]  Danny C. Sorensen,et al.  Deflation Techniques for an Implicitly Restarted Arnoldi Iteration , 1996, SIAM J. Matrix Anal. Appl..

[16]  Axel Ruhe The rational Krylov algorithm for nonsymmetric eigenvalue problems. III: Complex shifts for real matrices , 1994 .

[17]  H. A. V. D. Vorsty University Utrecht a Generalized Jacobi-davidson Iteration Method for Linear Eigenvalue Problems a Generalized Jacobi-davidson Iteration Method for Linear Eigenvalue Problems , 1994 .

[18]  Axel Ruhe Rational Krylov Algorithms for Nonsymmetric Eigenvalue Problems , 1994 .

[19]  Henk A. van der Vorst,et al.  Approximate solutions and eigenvalue bounds from Krylov subspaces , 1995, Numer. Linear Algebra Appl..

[20]  D. Skoogh An implementation of a parallel rational Krylov algorithm , 1996 .

[21]  Danny C. Sorensen,et al.  Deflation Techniques for an Implicitly Restarted Arnoldi Iteration , 1996, SIAM J. Matrix Anal. Appl..

[22]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[23]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM Rev..