Chondrites as samples of differentiated planetesimals

Abstract Chondritic meteorites are unmelted and variably metamorphosed aggregates of the earliest solids of the solar system. The variety of metamorphic textures in chondrites motivated the “onion shell” model in which chondrites originated at varying depths within a parent body heated primarily by the short-lived radioisotope 26 Al, with the highest metamorphic grade originating nearest the center. Allende and a few other chondrites possess a unidirectional magnetization that can be best explained by a core dynamo on their parent body, indicating internal melting and differentiation. Here we show that a parent body that accreted to >~200 km in radius by ~ 1.5 Ma after the formation of calcium–aluminum-rich inclusions (CAIs) would have a differentiated interior, and ongoing accretion would add a solid undifferentiated crust overlying a differentiated interior, consistent with formational and evolutionary constraints inferred for the CV parent body. This body could have produced a magnetic field lasting more than 10 Ma. This hypothesis represents a new model for the origin of some chondrites, presenting them as the unprocessed crusts of internally differentiated early planetesimals. Such bodies may exist in the asteroid belt today; the shapes and masses of the two largest asteroids, 1 Ceres and 2 Pallas, can be consistent with differentiated interiors, conceivably with small iron cores with hydrated silicate or ice–silicate mantles, covered with undifferentiated crusts.

[1]  S. Tachibana,et al.  The relative formation ages of ferromagnesian chondrules inferred from their initial aluminum‐26/aluminum‐27 ratios , 2002 .

[2]  T. Kleine,et al.  Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf-182W in CAIs, metal-rich chondrites, and iron meteorites , 2005 .

[3]  M. Zuber,et al.  The role of magma buoyancy on the eruption of lunar basalts , 2001 .

[4]  A. Krot,et al.  26Al‐26Mg systematics of Ca‐Al‐rich inclusions, amoeboid olivine aggregates, and chondrules from the ungrouped carbonaceous chondrite Acfer 094 , 2007 .

[5]  S. Sahijpal,et al.  Numerical simulations of the differentiation of accreting planetesimals with 26Al and 60Fe as the heat sources , 2007 .

[6]  G. J. Taylor,et al.  Original structures, and fragmentation and reassembly histories of asteroids - Evidence from meteorites , 1987 .

[7]  D. Ebel,et al.  Hf–W mineral isochron for Ca,Al-rich inclusions: Age of the solar system and the timing of core formation in planetesimals , 2008 .

[8]  T. Spohn,et al.  Numerical Modeling of 26Al-Induced Radioactive Melting of Asteroids Considering Accretion , 2002 .

[9]  R. Butler Natural remanent magnetization and thermomagnetic properties of the Allende meteorite , 1972 .

[10]  C. T. Russell,et al.  Differentiation of the asteroid Ceres as revealed by its shape , 2005, Nature.

[11]  P. Cassen,et al.  Astronomical constraints on nebular temperatures: Implications for planetesimal formation , 1999 .

[12]  T. Kleine,et al.  The Chronology of Asteroid Accretion, Differentiation, and Secondary Mineralization , 2009 .

[13]  E. A. Lima,et al.  Magnetism on the Angrite Parent Body and the Early Differentiation of Planetesimals , 2008, Science.

[14]  M. Bizzarro,et al.  Chronology of the Solar System’s Oldest Solids , 2008 .

[15]  O. Fabrichnaya The phase relations in the FeO-MgO-Al2O3-SiO2 system: assessment of thermodynamic properties and phase equilibria at pressures up to 30 GPa , 1999 .

[16]  M. Zolensky,et al.  Mineralogical and chemical modification of components in CV3 chondrites: Nebular or asteroidal processing? , 1995 .

[17]  Y. Amelin,et al.  26 Al- 26 Mg and 207 Pb- 206 Pb systematics of Allende CAIs: Canonical solar initial 26 Al/ 27 Al ratio reinstated , 2008 .

[18]  G. Cody,et al.  Organic thermometry for chondritic parent bodies , 2008 .

[19]  M. Schölling,et al.  Numerical Simulation of Convection in a Partially Molten Planetesimal , 2009 .

[20]  L. Rosenhead Conduction of Heat in Solids , 1947, Nature.

[21]  A. Rubin,et al.  Initial 26Al/27Al in carbonaceous-chondrite chondrules: too little 26Al to melt asteroids , 2004 .

[22]  M. Zolensky,et al.  Progressive alteration in CV3 chondrites: More evidence for asteroidal alteration , 1998 .

[23]  H. Haack,et al.  Early planetesimal melting from an age of 4.5662 Gyr for differentiated meteorites , 2005, Nature.

[24]  H. Haack,et al.  Mg isotope evidence for contemporaneous formation of chondrules and refractory inclusions , 2004, Nature.

[25]  B. Weiss,et al.  Magnetic evidence for a partially differentiated carbonaceous chondrite parent body , 2010, Proceedings of the National Academy of Sciences.

[26]  Christopher T. Russell,et al.  The Shape and Surface Variation of 2 Pallas from the Hubble Space Telescope , 2009, Science.

[27]  P. Cassen,et al.  Young chondrules in CB chondrites from a giant impact in the early Solar System , 2005, Nature.

[28]  Dah-Ning Yuan,et al.  A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris , 2006 .

[29]  A. Kearsley,et al.  The relationship between CK and CV chondrites , 2010 .

[30]  Y. Amelin U–Pb ages of angrites , 2008 .

[31]  G. Wasserburg,et al.  Demonstration of 26 Mg excess in Allende and evidence for 26 Al , 1976 .

[32]  A. Brearley Disordered biopyriboles, amphibole, and talc in the Allende meteorite: products of nebular or parent body aqueous alteration? , 1997, Science.

[33]  C. Maden,et al.  Hf-W thermochronometry: Closure temperature and constraints on the accretion and cooling history of the H chondrite parent body , 2008 .

[34]  Daniel T. Britt,et al.  Stony meteorite porosities and densities: A review of the data through 2001 , 2003 .

[35]  C. Agee,et al.  Pressure‐temperature phase diagram for the Allende meteorite , 1995 .

[36]  H. Haack,et al.  Effects of regolith/megaregolith insulation on the cooling histories of differentiated asteroids , 1990 .

[37]  T. Sisson,et al.  Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism , 1993 .

[38]  Chris J. Hawkesworth,et al.  Hf-W evidence for rapid differentiation of iron meteorite parent bodies , 2006 .

[39]  F. Nimmo Energetics of asteroid dynamos and the role of compositional convection , 2009 .

[40]  Harry Y. McSween,et al.  Meteorites and the early solar system II , 2006 .

[41]  A. Davis,et al.  The distribution of aluminum-26 in the early Solar System—A reappraisal , 1995 .

[42]  T. McCord,et al.  Ceres’ evolution and present state constrained by shape data , 2010 .

[43]  S. Russell,et al.  On early Solar System chronology: Implications of an heterogeneous spatial distribution of 26Al and 53Mn , 2005 .

[44]  H. McSween,et al.  A Thermal Model for the Differentiation of Asteroid 4 Vesta, Based on Radiogenic Heating☆ , 1998 .

[45]  I. Sanders,et al.  A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies , 2006 .

[46]  N. Kita,et al.  26Al–26Mg systematics of chondrules in a primitive CO chondrite , 2008 .

[47]  P. Quested,et al.  Thermal Diffusivity of Iron at High Temperature in Both the Liquid and Solid States , 2001 .

[48]  J. Lunine,et al.  26Al decay: Heat production and a revised age for Iapetus , 2009 .

[49]  K. Keil,et al.  The fate of pyroclasts produced in explosive eruptions on the asteroid 4 Vesta , 1997 .

[50]  J. Gilmour,et al.  Anthropic selection of a Solar System with a high 26Al/27Al ratio: Implications and a possible mechanism , 2009 .

[51]  S. Dermott Shapes and gravitational moments of satellites and asteroids , 1979 .

[52]  H. McSween,et al.  Temperature dependence of specific heat capacity and its effect on asteroid thermal models , 1999 .

[53]  Guy J. Consolmagno,et al.  The thermal conductivity of meteorites: New measurements and analysis , 2010 .

[54]  M. Funaki,et al.  Paleointensity of the Allende carbonaceous chondrite , 1983 .

[55]  M. Bizzarro,et al.  Pb–Pb dating of chondrules from CV chondrites by progressive dissolution , 2009 .

[56]  G. Manhès,et al.  UPb systematics of phosphates from equilibrated ordinary chondrites , 1994 .

[57]  Linda T. Elkins-Tanton,et al.  Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: Implications for Mars , 2003 .

[58]  J. Whitby,et al.  An early I‐Xe age for CB chondrite chondrule formation, and a re‐evaluation of the closure age of Shallowater enstatite , 2009 .

[59]  J. J. Becher Pb-Pb DATING OF THE D’ORBIGNY AND ASUKA 881371 ANGRITES AND A SECOND ABSOLUTE TIME CALIBRATION OF THE Mn-Cr CHRONOMETER , 2006 .

[60]  F. Albarède,et al.  Pb–Pb dating constraints on the accretion and cooling history of chondrites , 2007 .

[61]  T. Kleine,et al.  182Hf-182W isotope systematics of chondrites, eucrites, and martian meteorites: Chronology of core formation and early mantle differentiation in Vesta and Mars , 2004 .

[62]  G. Schubert,et al.  Conditions for pore water convection within carbonaceous chondrite parent bodies – implications for planetesimal size and heat production , 2003 .

[63]  M. Bizzarro,et al.  Hafnium–tungsten chronometry of angrites and the earliest evolution of planetary objects , 2007 .

[64]  Y. Amelin,et al.  Pb isotopic age of the Allende chondrules , 2007 .

[65]  Jeffrey S. Oishi,et al.  Rapid planetesimal formation in turbulent circumstellar disks , 2007, Nature.

[66]  H. Urey THE COSMIC ABUNDANCES OF POTASSIUM, URANIUM, AND THORIUM AND THE HEAT BALANCES OF THE EARTH, THE MOON, AND MARS. , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[67]  T. Grove,et al.  High-pressure experiments on magnesian eucrite compositions - Constraints on magmatic processes in the eucrite parent body , 1991 .

[68]  Valentine Rodger Miller,et al.  Of the Earth , 1982 .

[69]  M. Trieloff,et al.  Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry , 2003, Nature.

[70]  R. Lange,et al.  Densities of Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-TiO2-SiO2 liquids: New measurements and derived partial molar properties , 1987 .

[71]  D. Davis,et al.  Accretional Evolution of a Planetesimal Swarm , 1997 .

[72]  E. Scott,et al.  53Mn-53Cr dating of fayalite formation in the CV3 chondrite Mokoia: evidence for asteroidal alteration. , 1998, Science.

[73]  H. McSween,et al.  Importance of the accretion process in asteroid thermal evolution: 6 Hebe as an example , 2003 .

[74]  I. Hutcheon,et al.  26Al in plagioclase-rich chondrules in carbonaceous chondrites: Evidence for an extended duration of chondrule formation , 2009 .

[75]  N. Fujii,et al.  Ordinary chondrite parent body - An internal heating model , 1982 .

[76]  J. Anderson,et al.  The magnetic field and internal structure of Ganymede , 1996, Nature.

[77]  E. Maroon,et al.  Magma Ocean Solidification Processes on Vesta , 2008 .

[78]  R. Grieve Impact cratering , 1981, Nature.

[79]  T. Matsui,et al.  Multiple parent bodies of ordinary chondrites , 1984 .

[80]  I. Carmichael,et al.  The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states , 1991 .

[81]  Bruce Fegley,et al.  The Planetary Scientist's Companion , 1998 .

[82]  T. Swindle Implications of iodine‐xenon studies for the timing and location of secondary alteration , 1998 .

[83]  Y. Amelin,et al.  Lead Isotopic Ages of Chondrules and Calcium-Aluminum-Rich Inclusions , 2002, Science.