High throughput and low power dissipation in QCA pipelines using Bennett clocking

This paper presents a detailed analysis of an architectural pipeline scheme for Quantum-dot Cellular Automata (QCA); this scheme utilizes the so-called Bennett clocking for attaining high throughput and low power dissipation. In this arrangement, computation stages (utilizing Bennett clocking) and memory stages combine the low power dissipation of reversible computing with the high throughput feature of a pipeline. An example of the application of the proposed scheme to an XOR tree circuit (parity generator) is presented; a detailed analysis of throughput and power consumption is provided to show the effectiveness of the proposed architectural solution for QCA.

[1]  Peter M. Kogge,et al.  Reversible computation with quantum-dot cellular automata (QCA) , 2005, CF '05.

[2]  Gary H. Bernstein,et al.  Quantum-Dot Cellular Automata - Experimental Demonstration of a Functional Cell , 1998 .

[3]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[4]  J. Mutus,et al.  Controlled coupling and occupation of silicon atomic quantum dots at room temperature. , 2008, Physical review letters.

[5]  Michael P. Frank,et al.  The physical limits of computing , 2002, Computing in Science & Engineering.

[6]  Alexander Yu. Vlasov,et al.  On Quantum Cellular Automata , 2004, ArXiv.

[7]  C. Lent,et al.  Clocking of molecular quantum-dot cellular automata , 2001 .

[8]  C. Lent,et al.  Realization of a Functional Cell for Quantum-Dot Cellular Automata , 1997 .

[9]  Ieee Staff 2011 IEEE/ACM International Symposium on Nanoscale Architectures , 2011 .

[10]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[11]  Michael P. Frank,et al.  Introduction to reversible computing: motivation, progress, and challenges , 2005, CF '05.

[12]  Snider,et al.  Digital logic gate using quantum-Dot cellular automata , 1999, Science.

[13]  Charles H. Bennett Time/Space Trade-Offs for Reversible Computation , 1989, SIAM J. Comput..

[14]  C. Lent,et al.  Quantum‐Dot Cellular Automata at a Molecular Scale , 2002 .

[15]  Yuhui Lu,et al.  Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling , 2006, Nanotechnology.

[16]  Craig S. Lent,et al.  An architecture for molecular computing using quantum-dot cellular automata , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[17]  C. Lent,et al.  Maxwell's demon and quantum-dot cellular automata , 2003 .

[18]  Geetam S. Tomar,et al.  Carbon Nanotubes for Quantum-Dot Cellular Automata Clocking , 2011, 2011 International Conference on Communication Systems and Network Technologies.

[19]  P. D. Tougaw,et al.  A device architecture for computing with quantum dots , 1997, Proc. IEEE.