Efficient and Accurate Evolutionary Multi-Objective Optimization Paradigms for Satellite Constellation Design

[1]  J. W. Hartmann,et al.  Optimal earth orbiting satellite constellations via a pareto genetic algorithm , 1998 .

[2]  Giuseppe Confessore,et al.  A Genetic Algorithm to Design Satellite Constellations for Regional Coverage , 2001 .

[3]  Eric T. Martin,et al.  Comparing the N-Branch Genetic Algorithm and the Multi-Objective Genetic Algorithm , 2004 .

[4]  Rahim Tafazolli,et al.  Genetic Hybrid Satellite Constellation Design , 2003 .

[5]  Kai Xu,et al.  A scalable parallel genetic algorithm for x-ray spectroscopic analysis , 2005, GECCO '05.

[6]  Joshua D. Knowles,et al.  On metrics for comparing nondominated sets , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[7]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[8]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[9]  Rajeev Thakur,et al.  Optimizing the Synchronization Operations in Message Passing Interface One-Sided Communication , 2005, Int. J. High Perform. Comput. Appl..

[10]  Gary B. Lamont,et al.  Considerations in engineering parallel multiobjective evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[11]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[12]  Jameela Al-Jaroodi,et al.  Modeling parallel applications performance on heterogeneous systems , 2003, Proceedings International Parallel and Distributed Processing Symposium.

[13]  David B. Spencer,et al.  Satellite Constellation Design Tradeoffs Using Multiple-Objective Evolutionary Computation , 2006 .