3.6 – Regularization in Image Restoration and Reconstruction

[1]  O. Axelsson Iterative solution methods , 1995 .

[2]  G. Wahba Spline models for observational data , 1990 .

[3]  Per Christian Hansen,et al.  Rank-Deficient and Discrete Ill-Posed Problems , 1996 .

[4]  Gene H. Golub,et al.  Regularization by Truncated Total Least Squares , 1997, SIAM J. Sci. Comput..

[5]  I. Johnstone,et al.  Maximum Entropy and the Nearly Black Object , 1992 .

[6]  Gene H. Golub,et al.  Matrix computations , 1983 .

[7]  R. Kress Linear Integral Equations , 1989 .

[8]  W. F. Tinney,et al.  On computing certain elements of the inverse of a sparse matrix , 1975, Commun. ACM.

[9]  Donald Geman,et al.  Nonlinear image recovery with half-quadratic regularization , 1995, IEEE Trans. Image Process..

[10]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[11]  Peyman Milanfar,et al.  Reconstructing Binary Polygonal Objects from Projections: A Statistical View , 1994, CVGIP Graph. Model. Image Process..

[12]  Florin Popentiu,et al.  Iterative identification and restoration of images , 1993, Comput. Graph..

[13]  D. Donoho Nonlinear Solution of Linear Inverse Problems by Wavelet–Vaguelette Decomposition , 1995 .

[14]  Michel Barlaud,et al.  Deterministic edge-preserving regularization in computed imaging , 1997, IEEE Trans. Image Process..

[15]  Avinash C. Kak,et al.  Principles of computerized tomographic imaging , 2001, Classics in applied mathematics.

[16]  W. Clem Karl,et al.  A curve evolution approach to object-based tomographic reconstruction , 2003, IEEE Trans. Image Process..

[17]  Per Christian Hansen,et al.  REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems , 1994, Numerical Algorithms.

[18]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[19]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .