Indistinguishable photons from independent semiconductor nanostructures.

We demonstrate quantum interference between photons generated by the radiative decay processes of excitons that are bound to isolated fluorine donor impurities in ZnSe/ZnMgSe quantum-well nanostructures. The ability to generate single photons from these devices is confirmed by autocorrelation experiments, and the indistinguishability of photons emitted from two independent nanostructures is confirmed via a Hong-Ou-Mandel dip. These results indicate that donor impurities in appropriately engineered semiconductor structures can portray atomlike homogeneity and coherence properties, potentially enabling scalable technologies for future large-scale optical quantum computers and quantum communication networks.

[1]  S. Olmschenk,et al.  Quantum Teleportation Between Distant Matter Qubits , 2009, Science.

[2]  A J Shields,et al.  Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot. , 2008, Physical review letters.

[3]  A. Politi,et al.  Silica-on-Silicon Waveguide Quantum Circuits , 2008, Science.

[4]  J. O'Brien Optical Quantum Computing , 2007, Science.

[5]  A. Pawlis,et al.  Lasing of donor-bound excitons in ZnSe microdisks , 2007, 0712.1048.

[6]  E Ikonen,et al.  Realization of two Fourier-limited solid-state single-photon sources. , 2007, Optics express.

[7]  O N Godisov,et al.  Optical detection and ionization of donors in specific electronic and nuclear spin States. , 2006, Physical review letters.

[8]  D. Englund,et al.  Generation and transfer of single photons on a photonic crystal chip. , 2006, Optics express.

[9]  W. Munro,et al.  Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light , 2006, quant-ph/0610154.

[10]  Klaus Lischka,et al.  Investigation of excitons bound to fluorine donors in ZnSe , 2006 .

[11]  D. Matsukevich,et al.  Quantum interference of photon pairs from two remote trapped atomic ions , 2006, quant-ph/0608047.

[12]  P. Grangier,et al.  Quantum interference between two single photons emitted by independently trapped atoms , 2006, Nature.

[13]  Pablo Bianucci,et al.  Time-resolved photoluminescence spectroscopy of individual te impurity centers in ZnSe , 2006 .

[14]  T. Wilk,et al.  Characterization of Single Photons using Two-Photon Interference , 2005, quant-ph/0512023.

[15]  E. Waks,et al.  Dipole induced transparency in drop-filter cavity-waveguide systems. , 2005, Physical review letters.

[16]  Dan E. Browne,et al.  Brokered graph-state quantum computation , 2005, quant-ph/0509209.

[17]  Y. Lim,et al.  Repeat-until-success quantum computing using stationary and flying qubits (14 pages) , 2005, quant-ph/0508218.

[18]  M. Lukin,et al.  Fault-tolerant quantum repeaters with minimal physical resources, and implementations based on single photon emitters , 2005, quant-ph/0502112.

[19]  T. Ralph,et al.  Loss-tolerant optical qubits. , 2005, Physical review letters.

[20]  A. Kiraz,et al.  Erratum: Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing [Phys. Rev. A 69, 032305 (2004)] , 2004 .

[21]  Ren-Bao Liu,et al.  Theory of control of the spin-photon interface for quantum networks. , 2004, Physical review letters.

[22]  Jian-Wei Pan,et al.  Realization of a photonic controlled-NOT gate sufficient for quantum computation. , 2004, Physical review letters.

[23]  H. Kimble,et al.  Scalable photonic quantum computation through cavity-assisted interactions. , 2003, Physical review letters.

[24]  Jian-Wei Pan,et al.  Experimental nonlinear sign shift for linear optics quantum computation. , 2003, Physical review letters.

[25]  M. Atatüre,et al.  Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing , 2003, quant-ph/0308117.

[26]  E. Waks,et al.  Submicrosecond correlations in photoluminescence from InAs quantum dots , 2003, cond-mat/0308323.

[27]  E. Diamanti,et al.  Quantum teleportation with a quantum dot single photon source. , 2003, Physical review letters.

[28]  P. Kok,et al.  All linear optical quantum memory based on quantum error correction. , 2003, Physical review letters.

[29]  Zhi-Ming Zhang,et al.  Entangling distant atoms by interference of polarized photons. , 2003, Physical review letters.

[30]  C. Simon,et al.  Robust long-distance entanglement and a loophole-free bell test with ions and photons. , 2003, Physical review letters.

[31]  H. Kimble,et al.  Efficient engineering of multiatom entanglement through single-photon detections. , 2003, Physical review letters.

[32]  Yoshihisa Yamamoto,et al.  Indistinguishable photons from a single-photon device , 2002, Nature.

[33]  A. Forchel,et al.  Quantum optical studies on individual acceptor bound excitons in a semiconductor. , 2002, Physical review letters.

[34]  J. D. Franson,et al.  Probabilistic quantum logic operations using polarizing beam splitters , 2001, quant-ph/0107091.

[35]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[36]  R. Lauck,et al.  Isotopically pure ZnSe crystals grown from the vapor , 1999 .

[37]  V. P. Kochereshko,et al.  Optical studies of ZnSe/ZnMgSSe-based quantum-well semiconductor heterostructures , 1998 .

[38]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[39]  Detlef Hommel,et al.  Fabrication of CdZnSe/ZnSe quantum dots and quantum wires by electron beam lithography and wet chemical etching , 1995 .

[40]  Chuang,et al.  Simple quantum computer. , 1995, Physical review. A, Atomic, molecular, and optical physics.