Hydration of Hybrid Alkaline Cement Containing a Very Large Proportion of Fly Ash: A Descriptive Model

In hybrid alkaline fly ash cements, a new generation of binders, hydration, is characterized by features found in both ordinary portland cement (OPC) hydration and the alkali activation of fly ash (AAFA). Hybrid alkaline fly ash cements typically have a high fly ash (70 wt % to 80 wt %) and low clinker (20 wt % to 30 wt %) content. The clinker component favors curing at ambient temperature. A hydration mechanism is proposed based on the authors’ research on these hybrid binders over the last five years. The mechanisms for OPC hydration and FA alkaline activation are summarized by way of reference. In hybrid systems, fly ash activity is visible at very early ages, when two types of gel are formed: C–S–H from the OPC and N–A–S–H from the fly ash. In their mutual presence, these gels tend to evolve, respectively, into C–A–S–H and (N,C)–A–S–H. The use of activators with different degrees of alkalinity has a direct impact on reaction kinetics but does not modify the main final products, a mixture of C–A–S–H and (N,C)–A–S–H gels. The proportion of each gel in the mix does, however, depend on the alkalinity generated in the medium.

[1]  Karen Scrivener,et al.  Delayed ettringite formation , 2001 .

[2]  A. Nonat,et al.  Experimental study of Si–Al substitution in calcium-silicate-hydrate (C-S-H) prepared under equilibrium conditions , 2009 .

[3]  Á. Palomo,et al.  Alkaline Activation of Fly Ashes: NMR Study of the Reaction Products , 2004 .

[4]  S. Donatello,et al.  Durability of very high volume fly ash cement pastes and mortars in aggressive solutions , 2013 .

[5]  H. Justnes,et al.  Designing Alternative Binders Utilizing Synergistic Reactions , 2015, SP-303: Thirteenth International Conference on Advances in Concrete Technology and Sustainability Issues.

[6]  Ángel Palomo,et al.  Composition and Microstructure of Alkali Activated Fly Ash Binder: Effect of the Activator , 2005 .

[7]  Caijun Shi,et al.  Acceleration of the reactivity of fly ash by chemical activation , 1995 .

[8]  F. Pacheco-Torgal,et al.  Compressive strength, microstructure and hydration products of hybrid alkaline cements , 2014 .

[9]  G. Sant,et al.  The influence of sodium and potassium hydroxide on volume changes in cementitious materials , 2012 .

[10]  J. Deventer,et al.  Geopolymer technology: the current state of the art , 2007 .

[11]  Robert J. Flatt,et al.  Dissolution theory applied to the induction period in alite hydration , 2010 .

[12]  I. Richardson Model structures for C-(A)-S-H(I) , 2014, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[13]  Á. Palomo,et al.  Effect of Calcium Additions on N-A-S-H Cementitious Gels , 2010 .

[14]  L. Ge,et al.  Cement hydration-based micromechanics modeling of the time-dependent small-strain stiffness of fly ash-stabilized soils. , 2016 .

[15]  J. F. Young,et al.  The role of Al in C-S-H: NMR, XRD, and compositional results for precipitated samples , 2006 .

[16]  Ángel Palomo,et al.  Alkali activation of fly ash: Effect of the SiO2/Na2O ratio Part I: FTIR study , 2007 .

[17]  L. Ge,et al.  Laboratory investigation of the strength, stiffness, and thermal conductivity of fly ash and lime kiln dust stabilised clay subgrade materials , 2015 .

[18]  S. Donatello,et al.  Very High Volume Fly Ash Cements. Early Age Hydration Study Using Na2SO4 as an Activator , 2013 .

[19]  Ángel Palomo,et al.  Variation in hybrid cements over time. Alkaline activation of fly ash–portland cement blends , 2013 .

[20]  Waltraud M. Kriven,et al.  The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers , 2007 .

[21]  C. Yip,et al.  Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder , 2003 .

[22]  D. Macphee,et al.  Effect on Fresh C-S-H gels of the Simultaneous Addition of Alkali and Aluminium , 2010 .

[23]  A. Nonat,et al.  Hydration of cementitious materials, present and future , 2011 .

[24]  André Nonat,et al.  Experimental investigation of calcium silicate hydrate (C-S-H) nucleation , 1999 .

[25]  Á. Palomo,et al.  Microstructure Development of Alkali-Activated Fly Ash Cement: A Descriptive Model , 2005 .

[26]  R. Dhir,et al.  Development of high volume fly ash cements for use in concrete construction , 2005 .

[27]  A. Fernández-Jiménez,et al.  Opc-fly ash cementitious systems: study of gel binders produced during alkaline hydration , 2007 .

[28]  K. Scrivener The development of microstructure during the hydration of Portland cement , 1984 .

[29]  W. Jason Weiss,et al.  Fine limestone additions to regulate setting in high volume fly ash mixtures , 2012 .

[30]  A. Chatterji,et al.  Hydration of Portland Cement , 1965, Nature.

[31]  C. Dobson,et al.  The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (C-S-H) phase , 1994 .

[32]  J. Deventer,et al.  The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation , 2005 .

[33]  S. Martínez-Ramírez,et al.  Microstructure studies on Portland cement pastes obtained in highly alkaline environments , 2001 .

[34]  Caijun Shi,et al.  Pozzolanic reaction in the presence of chemical activators: Part II — Reaction products and mechanism , 2000 .

[35]  J. Deventer,et al.  Geopolymers : structure, processing, properties and industrial applications , 2009 .

[36]  Ángel Palomo,et al.  The Early Age Hydration Reactions of a Hybrid Cement Containing a Very High Content of Coal Bottom Ash , 2014 .

[37]  A. Fernández-Jiménez,et al.  “Metakaolin-Slag-Clinker Blends.” The Role of Na+ or K+ as Alkaline Activators of Theses Ternary Blends , 2013 .

[38]  J. Deventer,et al.  The Role of Inorganic Polymer Technology in the Development of ‘Green Concrete’ , 2007 .

[39]  Ángel Palomo,et al.  Hydration kinetics in hybrid binders: Early reaction stages , 2013 .

[40]  B. Lothenbach,et al.  Chemical activation of hybrid binders based on siliceous fly ash and Portland cement , 2016 .

[41]  D. E. Macphee,et al.  Novel cement systems (sustainability). Session 2 of the Fred Glasser Cement Science Symposium , 2010 .

[42]  Ángel Palomo,et al.  A review on alkaline activation: new analytical perspectives , 2014 .

[43]  V. M. Malhotra,et al.  Pozzolanic and cementitious materials , 1996 .

[44]  Arnon Bentur,et al.  Effect of Gypsum on the Hydration and Strength of C3S Pastes , 1976 .

[45]  Kasım Mermerdaş,et al.  Optimization of concrete mixture with hybrid blends of metakaolin and fly ash using response surface method , 2014 .

[46]  Christopher R. Cheeseman,et al.  Comparison of test methods to assess pozzolanic activity , 2010 .

[47]  S. Alonso,et al.  Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio , 2001 .

[48]  I. Odler,et al.  On the origin of Portland cement setting , 1992 .

[49]  Roberts,et al.  High Resolution Solid-State NMR of Silicates and Zeolites , 2022 .

[50]  K. Scrivener,et al.  Interactions between alite and C3A-gypsum hydrations in model cements , 2013 .

[51]  A. Fernández-Jiménez,et al.  Alkaline Hydration of Tricalcium Aluminate , 2012 .

[52]  J. Skalny,et al.  DEF: As a form of sulfate attack , 1996 .

[53]  X. Cong,et al.  29Si MAS NMR study of the structure of calcium silicate hydrate , 1996 .

[54]  I. Odler,et al.  Early hydration of tricalcium silicate III. Control of the induction period , 1981 .

[55]  J. Sanz,et al.  C–S–H Gels: Interpretation of 29Si MAS‐NMR Spectra , 2012 .

[56]  D. Bentz,et al.  Optimization of cement and fly ash particle sizes to produce sustainable concretes , 2011 .

[57]  B. Lothenbach,et al.  Hydration of Portland cement with high replacement by siliceous fly ash , 2012 .

[58]  M. Pauri,et al.  Tricalcium aluminate hydration in the presence of lime, gypsum or sodium sulfate , 1978 .

[59]  G. Corder,et al.  Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement , 2011 .

[60]  D. Macphee,et al.  Effect of Alkalis on Fresh C-S-H Gels. FTIR Analysis , 2009 .

[61]  A. Donald,et al.  Tricalcium aluminate hydration: Microstructural observations by in-situ electron microscopy , 2004 .

[62]  A. Benesi,et al.  Silicon‐29 Magic Angle Spinning Nuclear Magnetic Resonance Study of Calcium Silicate Hydrates , 1989 .

[63]  C. Shi,et al.  Alkali-Activated Cements and Concretes , 2003 .

[64]  Á. Palomo,et al.  Characterisation of fly ashes. Potential reactivity as alkaline cements , 2003 .

[65]  J. Bullard,et al.  Mechanisms of cement hydration , 2011 .

[66]  B. Lothenbach,et al.  Supplementary cementitious materials , 2011 .

[67]  S. Martínez-Ramírez,et al.  OPC hydration with highly alkaline solutions , 2001 .

[68]  Wei Sun,et al.  Hydration of high-volume fly ash cement pastes , 2000 .

[69]  Ángel Palomo,et al.  Alkali-activated fly ashes: A cement for the future , 1999 .

[70]  M. Moranville,et al.  The U phase formation in cement-based systems containing high amounts of Na2SO4 , 1996 .

[71]  Á. Palomo,et al.  Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part II: 29Si MAS-NMR Survey , 2008 .

[72]  Harald Justnes,et al.  Synergy between fly ash and limestone powder in ternary cements , 2011 .

[73]  Á. Palomo,et al.  Crucial insights on the mix design of alkali-activated cement-based binders , 2015 .

[74]  M. Blanco-Varela,et al.  Alkaline Activation of Metakaolin: Effect of Calcium Hydroxide in the Products of Reaction , 2004 .

[75]  D. Michel,et al.  High-resolution solid-state NMR of silicates and zeolites , 1987 .

[76]  C. Shi,et al.  New cements for the 21st century: The pursuit of an alternative to Portland cement , 2011 .

[77]  Á. Palomo,et al.  Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O , 2011 .

[78]  Ángel Palomo,et al.  Factors affecting early compressive strength of alkali activated fly ash (OPC-free) concrete , 2007 .